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Introduction and Notation

Suppose that V' is a finite dimensional representation of G over IF.

The action of G on V induces an action on the dual V* which
extends to an action by degree preserving algebra automorphisms
on the symmetric algebra

FlV]:=S(V") =Flxy, ...,z
where {z1,...,x,} is a basis for V*.

The ring of invariants is the subring

FIVI©:={f €F[V]]| (f)g=f Vg € G}.

If G is finite then F[V]“ is a finitely generated algebra.
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This is still true if char(IF) = p and p does not divide |G].

However, if p divides |G| (the modular case) there may be infinitely
many isomorphism classes of n-dimensional FG-modules.



Example: F = IEij G=7Z/pXx7Z/p=<gi,g >, n=2. Define

plg1) = (é 1) p(g2) = (é ?)



Example: F = IEij G=7Z/pXx7Z/p=<gi,g >, n=2. Define

plg1) = (é 1) p(g2) = (é ?)

[f A € F\F, then p is faithful and distinct A give non-equivalent
representations.



Example: F = IEij G=7Z/pXx7Z/p=<gi,g >, n=2. Define

plg1) = (é 1) p(g2) = (é ?)

[f A € F\F, then p is faithful and distinct A give non-equivalent
representations.

Identify 2 <+ [0 1] and y < [1 0] so z € F[z, y]?'%). Define
2
Ny:=[Juelo) = [] W+ @+bNa) =y +zf(z,y,)).

geCG a,belf)



Example: F = IEij G=7Z/pXx7Z/p=<gi,g >, n=2. Define

plg1) = (é 1) p(g2) = (é ?)

[f A € F\F, then p is faithful and distinct A give non-equivalent
representations.

Identify 2 <+ [0 1] and y < [1 0] so z € F[z, y]?'%). Define
2
Ny:=[Juelo) = [] W+ @+bNa) =y +zf(z,y,)).

geCG a,belf)

If A € F\F, then |p(G)| = p? and Flz, y]"'¢) = Fx, Ny].



Example: F = IEij G=7Z/pXx7Z/p=<gi,g >, n=2. Define

plg1) = (é 1) p(g2) = (é ?)

[f A € F\F, then p is faithful and distinct A give non-equivalent
representations.

Identify 2 <+ [0 1] and y < [1 0] so z € F[z, y]?'%). Define
2
Ny:=[Juelo) = [] W+ @+bNa) =y +zf(z,y,)).

geCG a,belf)

If A € F\F, then |p(G)| = p? and Flz, y]"'¢) = Fx, Ny].
Calculate over the function field F(¢) and specialise ¢ to A7



Example: F = IEij G=7Z/pXx7Z/p=<gi,g >, n=2. Define

plg1) = (é 1) p(g2) = (é ?)

[f A € F\F, then p is faithful and distinct A give non-equivalent
representations.

Identify 2 <+ [0 1] and y < [1 0] so z € F[z, y]?'%). Define
2
Ny:=[Juelo) = [] W+ @+bNa) =y +zf(z,y,)).

geG a,belf)
If A € F\F, then |p(G)| = p? and Flz, y]"'¢) = Fx, Ny].
Calculate over the function field F(¢) and specialise ¢ to A7

Since A € IF), iff \? = )\, specialisation gives a generating set as long
as we avoid roots of t¥ —t.
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Varieties of Representations

Suppose G =< g1, ...,9; | r1,..., 7 > is a finite group.

Since G is finite, we can choose the relations to be of the form
9i iy "+ " Giy, = 1.

A representation p : G — GL,(F) is determined by matrices p(g;)

subject to relations p(r;).

Thus each n-dimensional FG-module gives a point in GL,,(IF)".

Let X denote the subset of GL,(IF)" consisting of representations.

Assume [F is algebraically closed.

Then GL,(F) and GL,(IF)" are algebraic varieties.

X is determined by the relations p(r;), which are polynomials in the
entries of the matrices, and is thus a subvariety of G L, (IF)".
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The variety X parametrises n-dimensional FG-modules.

The action of GL,(F) by conjugation on GL,(IF)" restricts to an
action on X with the orbits, X/GL,(F), consisting of equivalence
classes of representations.

The automorphism group of G, Aut(G), acts on X by pre-composition.

For each element of Aut(G)\X/GL,(F), there is a corresponding
isomorphism class of subrings of Flzy, ..., x,], i.e., for ¢ € Aut(G)
and 0 € GL,(F),

Flzy, ...,z D 2 Flay, ... ,xn]a_lp(gp(G))g.

12
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Example: F=F, G =Z/p x Z/p =< g1, 92 >, n = 3. Define

p(g1) =

o O ==
o O
O =
D S

10
11 ) p<92>:
01

Can we compute Flz, y, 2]7()?
Note Flz,y, 2]%) = (Flz, y, z]p(gl))p(QQ).
Furthermore, Fz, 1, 2]°9) is the hypersurface generated by z,
d = y* — 22z +y),
N = ]+ az) =y —ya?™,

aEFp

N, = H (z+ay+<;)a:> — Pt

a€lF,

subject to a relation dP — Ni + 22PNy + f(z, d).



Writing A = p(g2) — 1, we have

(N1)A = (N = NP,
(d)A = (A = X —2u)z”.



Writing A = p(g2) — 1, we have

(N1)A = (N = NP,
(d)A = (A = X —2u)z”.

We have four cases:



Writing A = p(g2) — 1, we have

(N1)A = (N = NP,
(d)A = (A = X —2u)z”.

We have four cases:

1. The generic case: Calculate over F(t,s) and specialise t to A
and s to . The ring of invariants is a hypersurface with generators
in degrees 1,p,p + 2,p* and a relation in degree p(p + 2). The
specialisation gives the correct ring of invariants for A — \ # 0 and

AN — X —2u#0.



Writing A = p(g2) — 1, we have

(N1)A = (N = NP,
(d)A = (A = X —2u)z”.
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1. The generic case: Calculate over F(t,s) and specialise t to A
and s to . The ring of invariants is a hypersurface with generators
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2. p = (;) Then d is invariant. Calculate over F(¢) and specialise
t to A. The ring of invariants is a hypersurface with generators in
degrees 1,2, p?, p* and a relation in degree 2p?. The specialisation
gives the correct ring of invariants for \? — X £ 0.
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3. A = A: Then V; is invariant. By replacing go with g; Ags, We can
assume A = (. Calculate over F(s) and specialise s to p. The ring of
invariants is a hypersurface with generators in degrees 1, p, p + 1, p?
and a relation in degree p(p+1). The specialisation gives the correct
ring of invariants for u £ 0.

4. N = )Xand yu = (g) The action is not faithful. In fact
Flz,y, 21" = Flz,y, 21790,

Remarks:

e These are a posterior: observations.

e Can we develop a framework to identify the equations that de-
scribe the generic case without computing the ring of invariants?
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In the n = 2 case, it is possible to embed the family of representations
in a larger representation: V/(\) C W, giving F]W| = F[V ())].

The long exact sequence coming from group cohomology gives

.. = FW]¢ - FIV(\)]® — HYG, ker(r)) — HYG,F[W]) — - -

We can take W to be the representation

110
pw(gi) =1 010 |, pwig) =
001

o O
S~ O
b—\©|

1
0
for any a € F\ F,,.

Choose the embedding so that w(x3) = y, m(x2) = v and w(x1) = cx
where ¢ = (A — a)/(af — «).

To verify 7 is a G-map:

m(x30s) = w(axs + (o — a)ry) = (a+ (& — a)c)r = \x.
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It is easy to see that F[W]¢ = F|xy, 29, N(23)] with

N(z3) = ngg:x§2+---
geG

and that ker(mw) = (z1 — cxo) F|W].
Thus I := ker(7)® = (z1 — cxo)F[W]C.
Hence F[W|% /I = Flz, w(N(x3))].
Therefore, if A € F\ F, then 7% is surjective.
However, if A € F, then y* — 21y € F[V(A\)]¢ \ im(7%),
i.c., thereis a class x € H'(G, ker(m)) which is zero in H'(G, F[W]).

[ am still looking for the analog of W for the three variable case.



