Rings of Invariants and Varieties of Representations

Dr James Shank, University of Kent, June 2010
Introduction and Notation
Introduction and Notation

Suppose that V is a finite dimensional representation of G over \mathbb{F}.
Introduction and Notation

Suppose that V is a finite dimensional representation of G over \mathbb{F}. The action of G on V induces an action on the dual V^*, which extends to an action by degree preserving algebra automorphisms on the symmetric algebra

$$\mathbb{F}[V] := S(V^*) = \mathbb{F}[x_1, \ldots, x_n]$$

where $\{x_1, \ldots, x_n\}$ is a basis for V^*.
Introduction and Notation

Suppose that V is a finite dimensional representation of G over \mathbb{F}. The action of G on V induces an action on the dual V^*, which extends to an action by degree preserving algebra automorphisms on the symmetric algebra

$$\mathbb{F}[V] := S(V^*) = \mathbb{F}[x_1, \ldots, x_n]$$

where $\{x_1, \ldots, x_n\}$ is a basis for V^*.

The ring of invariants is the subring

$$\mathbb{F}[V]^G := \{ f \in \mathbb{F}[V] \mid (f)g = f \ \forall g \in G\}.$$
Introduction and Notation

Suppose that V is a finite dimensional representation of G over \mathbb{F}. The action of G on V induces an action on the dual V^*, which extends to an action by degree preserving algebra automorphisms on the symmetric algebra

$$F[V] := S(V^*) = F[x_1, \ldots, x_n]$$

where $\{x_1, \ldots, x_n\}$ is a basis for V^*. The ring of invariants is the subring

$$F[V]^G := \{ f \in F[V] \mid (f)g = f \ \forall g \in G \}.$$

If G is finite then $F[V]^G$ is a finitely generated algebra.
For finite G and fixed n, if $\text{char}(\mathbb{F}) = 0$ then there are, up to isomorphism, only finitely many $\mathbb{F}G$-modules.
For finite G and fixed n, if $\text{char}(\mathbb{F}) = 0$ then there are, up to isomorphism, only finitely many $\mathbb{F}G$-modules.

This is still true if $\text{char}(\mathbb{F}) = p$ and p does not divide $|G|$.
For finite G and fixed n, if $\text{char}(\mathbb{F}) = 0$ then there are, up to isomorphism, only finitely many $\mathbb{F}G$-modules.

This is still true if $\text{char}(\mathbb{F}) = p$ and p does not divide $|G|$.

However, if p divides $|G|$ (the modular case) there may be infinitely many isomorphism classes of n-dimensional $\mathbb{F}G$-modules.
Example: \(\mathbb{F} = \overline{\mathbb{F}}_p \), \(G = \mathbb{Z}/p \times \mathbb{Z}/p = \langle g_1, g_2 \rangle \), \(n = 2 \). Define

\[
\rho(g_1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \rho(g_2) = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}.
\]
Example: $\mathbb{F} = \overline{\mathbb{F}_p}$, $G = \mathbb{Z}/p \times \mathbb{Z}/p = \langle g_1, g_2 \rangle$, $n = 2$. Define
\[
\rho(g_1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \rho(g_2) = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}.
\]

If $\lambda \in \mathbb{F} \setminus \mathbb{F}_p$ then ρ is faithful and distinct λ give non-equivalent representations.
Example: \(\mathbb{F} = \overline{\mathbb{F}}_p \), \(G = \mathbb{Z}/p \times \mathbb{Z}/p = \langle g_1, g_2 \rangle \), \(n = 2 \). Define

\[
\rho(g_1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \rho(g_2) = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}.
\]

If \(\lambda \in \mathbb{F} \setminus \mathbb{F}_p \) then \(\rho \) is faithful and distinct \(\lambda \) give non-equivalent representations.

Identify \(x \leftrightarrow [0 \ 1] \) and \(y \leftrightarrow [1 \ 0] \) so \(x \in \mathbb{F}[x, y]^{\rho(G)} \). Define

\[
N y := \prod_{g \in G} y \rho(g) = \prod_{a, b \in \mathbb{F}_p} (y + (a + b\lambda)x) = y^{p^2} + xf(x, y, \lambda).
\]
Example: $\mathbb{F} = \overline{\mathbb{F}}_p$, $G = \mathbb{Z}/p \times \mathbb{Z}/p = \langle g_1, g_2 \rangle$, $n = 2$. Define

$$\rho(g_1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \rho(g_2) = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}.$$

If $\lambda \in \mathbb{F} \setminus \mathbb{F}_p$ then ρ is faithful and distinct λ give non-equivalent representations.

Identify $x \leftrightarrow [0 \ 1]$ and $y \leftrightarrow [1 \ 0]$ so $x \in \mathbb{F}[x, y]^{\rho(G)}$. Define

$$Ny := \prod_{g \in G} y \rho(g) = \prod_{a, b \in \mathbb{F}_p} (y + (a + b\lambda)x) = y^{p^2} + xf(x, y, \lambda).$$

If $\lambda \in \mathbb{F} \setminus \mathbb{F}_p$ then $|\rho(G)| = p^2$ and $\mathbb{F}[x, y]^{\rho(G)} = \mathbb{F}[x, Ny]$.
Example: \(\mathbb{F} = \overline{\mathbb{F}_p}, G = \mathbb{Z}/p \times \mathbb{Z}/p = \langle g_1, g_2 \rangle, n = 2. \) Define
\[
\rho(g_1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \rho(g_2) = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}.
\]

If \(\lambda \in \mathbb{F} \setminus \mathbb{F}_p \) then \(\rho \) is faithful and distinct \(\lambda \) give non-equivalent representations.

Identify \(x \leftrightarrow [0 \ 1] \) and \(y \leftrightarrow [1 \ 0] \) so \(x \in \mathbb{F}[x, y]^{\rho(G)}. \) Define
\[
Ny := \prod_{g \in G} y\rho(g) = \prod_{a,b \in \mathbb{F}_p} (y + (a + b\lambda)x) = y^{p^2} + xf(x, y, \lambda).
\]

If \(\lambda \in \mathbb{F} \setminus \mathbb{F}_p \) then \(|\rho(G)| = p^2 \) and \(\mathbb{F}[x, y]^{\rho(G)} = \mathbb{F}[x, Ny]. \)

Calculate over the function field \(\mathbb{F}(t) \) and specialise \(t \) to \(\lambda? \)
Example: $\mathbb{F} = \overline{\mathbb{F}_p}$, $G = \mathbb{Z}/p \times \mathbb{Z}/p = \langle g_1, g_2 \rangle$, $n = 2$. Define

$$\rho(g_1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \rho(g_2) = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}.$$

If $\lambda \in \mathbb{F} \setminus \mathbb{F}_p$ then ρ is faithful and distinct λ give non-equivalent representations.

Identify $x \leftrightarrow [0 \ 1]$ and $y \leftrightarrow [1 \ 0]$ so $x \in \mathbb{F}[x, y]^{\rho(G)}$. Define

$$Ny := \prod_{g \in G} y \rho(g) = \prod_{a, b \in \mathbb{F}_p} (y + (a + b\lambda)x) = y^{p^2} + xf(x, y, \lambda).$$

If $\lambda \in \mathbb{F} \setminus \mathbb{F}_p$ then $|\rho(G)| = p^2$ and $\mathbb{F}[x, y]^{\rho(G)} = \mathbb{F}[x, Ny]$.

Calculate over the function field $\mathbb{F}(t)$ and specialise t to λ?

Since $\lambda \in \mathbb{F}_p$ iff $\lambda^p = \lambda$, specialisation gives a generating set as long as we avoid roots of $t^p - t$.
Varieties of Representations
Varieties of Representations

Suppose $G = \langle g_1, \ldots, g_r \mid r_1, \ldots, r_k \rangle$ is a finite group.
Varieties of Representations

Suppose $G = \langle g_1, \ldots, g_r \mid r_1, \ldots, r_k \rangle$ is a finite group. Since G is finite, we can choose the relations to be of the form

$$g_{i_1}g_{i_2} \cdots g_{i_m} = 1.$$
Varieties of Representations

Suppose $G = \langle g_1, \ldots, g_r \mid r_1, \ldots, r_k \rangle$ is a finite group.

Since G is finite, we can choose the relations to be of the form

$$g_{i_1}g_{i_2} \cdots g_{i_m} = 1.$$

A representation $\rho : G \to GL_n(\mathbb{F})$ is determined by matrices $\rho(g_i)$ subject to relations $\rho(r_j)$.

Varieties of Representations

Suppose $G = \langle g_1, \ldots, g_r \mid r_1, \ldots, r_k \rangle$ is a finite group.

Since G is finite, we can choose the relations to be of the form

$$g_{i_1}g_{i_2} \cdots g_{i_m} = 1.$$

A representation $\rho : G \to GL_n(\mathbb{F})$ is determined by matrices $\rho(g_i)$ subject to relations $\rho(r_j)$.

Thus each n-dimensional $\mathbb{F}G$-module gives a point in $GL_n(\mathbb{F})^r$.
Varieties of Representations

Suppose $G = \langle g_1, \ldots, g_r \mid r_1, \ldots, r_k \rangle$ is a finite group.

Since G is finite, we can choose the relations to be of the form

$$g_{i_1}g_{i_2} \cdots g_{i_m} = 1.$$

A representation $\rho : G \to GL_n(\mathbb{F})$ is determined by matrices $\rho(g_i)$ subject to relations $\rho(r_j)$.

Thus each n-dimensional $\mathbb{F}G$-module gives a point in $GL_n(\mathbb{F})^r$.

Let X denote the subset of $GL_n(\mathbb{F})^r$ consisting of representations.
Varieties of Representations

Suppose $G = \langle g_1, \ldots, g_r \mid r_1, \ldots, r_k \rangle$ is a finite group.

Since G is finite, we can choose the relations to be of the form

$$g_{i_1}g_{i_2} \cdots g_{i_m} = 1.$$

A representation $\rho : G \to GL_n(\mathbb{F})$ is determined by matrices $\rho(g_i)$ subject to relations $\rho(r_j)$.

Thus each n-dimensional $\mathbb{F}G$-module gives a point in $GL_n(\mathbb{F})^r$.

Let X denote the subset of $GL_n(\mathbb{F})^r$ consisting of representations. Assume \mathbb{F} is algebraically closed.
Varieties of Representations

Suppose $G = \langle g_1, \ldots, g_r \mid r_1, \ldots, r_k \rangle$ is a finite group.

Since G is finite, we can choose the relations to be of the form

$$g_{i_1}g_{i_2} \cdots g_{i_m} = 1.$$

A representation $\rho : G \to GL_n(\mathbb{F})$ is determined by matrices $\rho(g_i)$ subject to relations $\rho(r_j)$.

Thus each n-dimensional $\mathbb{F}G$-module gives a point in $GL_n(\mathbb{F})^r$.

Let X denote the subset of $GL_n(\mathbb{F})^r$ consisting of representations.

Assume \mathbb{F} is algebraically closed.

Then $GL_n(\mathbb{F})$ and $GL_n(\mathbb{F})^r$ are algebraic varieties.
Varieties of Representations

Suppose \(G = \langle g_1, \ldots, g_r \mid r_1, \ldots, r_k \rangle \) is a finite group.

Since \(G \) is finite, we can choose the relations to be of the form
\[
g_{i_1}g_{i_2} \cdots g_{i_m} = 1.
\]

A representation \(\rho : G \to GL_n(\mathbb{F}) \) is determined by matrices \(\rho(g_i) \) subject to relations \(\rho(r_j) \).

Thus each \(n \)-dimensional \(\mathbb{F}G \)-module gives a point in \(GL_n(\mathbb{F})^r \).

Let \(X \) denote the subset of \(GL_n(\mathbb{F})^r \) consisting of representations.

Assume \(\mathbb{F} \) is algebraically closed.

Then \(GL_n(\mathbb{F}) \) and \(GL_n(\mathbb{F})^r \) are algebraic varieties.

\(X \) is determined by the relations \(\rho(r_j) \), which are polynomials in the entries of the matrices, and is thus a subvariety of \(GL_n(\mathbb{F})^r \).
The variety X parametrises n-dimensional $\mathbb{F}G$-modules.
The variety X parametrises n-dimensional $\mathbb{F}G$-modules.

The action of $GL_n(\mathbb{F})$ by conjugation on $GL_n(\mathbb{F})^r$ restricts to an action on X with the orbits, $X/GL_n(\mathbb{F})$, consisting of equivalence classes of representations.
The variety X parametrises n-dimensional $\mathbb{F}G$-modules.

The action of $GL_n(\mathbb{F})$ by conjugation on $GL_n(\mathbb{F})^r$ restricts to an action on X with the orbits, $X/GL_n(\mathbb{F})$, consisting of equivalence classes of representations.

The automorphism group of G, $Aut(G)$, acts on X by pre-composition.
The variety X parametrises n-dimensional $\mathbb{F}G$-modules.

The action of $GL_n(\mathbb{F})$ by conjugation on $GL_n(\mathbb{F})^r$ restricts to an action on X with the orbits, $X/GL_n(\mathbb{F})$, consisting of equivalence classes of representations.

The automorphism group of G, $Aut(G)$, acts on X by pre-composition. For each element of $Aut(G) \backslash X/GL_n(\mathbb{F})$, there is a corresponding isomorphism class of subrings of $\mathbb{F}[x_1, \ldots, x_n]$, i.e., for $\varphi \in Aut(G)$ and $\sigma \in GL_n(\mathbb{F})$,

$$\mathbb{F}[x_1, \ldots, x_n]^\rho(G) \cong \mathbb{F}[x_1, \ldots, x_n]^\sigma \rho(\varphi(G))\sigma.$$
Example: $\mathbb{F} = \overline{\mathbb{F}}_p$, $G = \mathbb{Z}/p \times \mathbb{Z}/p = \langle g_1, g_2 \rangle$, $n = 3$. Define

$$
\rho(g_1) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad \rho(g_2) = \begin{pmatrix} 1 & \lambda & \mu \\ 0 & 1 & \lambda \\ 0 & 0 & 1 \end{pmatrix}.
$$
Example: \(\mathbb{F} = \overline{\mathbb{F}}_p \), \(G = \mathbb{Z}/p \times \mathbb{Z}/p = \langle g_1, g_2 \rangle \), \(n = 3 \). Define

\[
\rho(g_1) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad \rho(g_2) = \begin{pmatrix} 1 & \lambda & \mu \\ 0 & 1 & \lambda \\ 0 & 0 & 1 \end{pmatrix}.
\]

Can we compute \(\mathbb{F}[x, y, z]^{\rho(G)} \)?
Example: $\mathbb{F} = \overline{\mathbb{F}_p}$, $G = \mathbb{Z}/p \times \mathbb{Z}/p = \langle g_1, g_2 \rangle$, $n = 3$. Define

$$\rho(g_1) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad \rho(g_2) = \begin{pmatrix} 1 & \lambda & \mu \\ 0 & 1 & \lambda \\ 0 & 0 & 1 \end{pmatrix}.$$

Can we compute $\mathbb{F}[x, y, z]^{\rho(G)}$?

Note $\mathbb{F}[x, y, z]^{\rho(G)} = (\mathbb{F}[x, y, z]^{\rho(g_1)})^{\rho(g_2)}$.
Example: $\mathbb{F} = \overline{\mathbb{F}}_p$, $G = \mathbb{Z}/p \times \mathbb{Z}/p = \langle g_1, g_2 \rangle$, $n = 3$. Define

$$\rho(g_1) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad \rho(g_2) = \begin{pmatrix} 1 & \lambda & \mu \\ 0 & 1 & \lambda \\ 0 & 0 & 1 \end{pmatrix}.$$

Can we compute $\mathbb{F}[x, y, z]^{\rho(G)}$?

Note $\mathbb{F}[x, y, z]^{\rho(G)} = (\mathbb{F}[x, y, z]^{\rho(g_1)})^{\rho(g_2)}$.

Furthermore, $\mathbb{F}[x, y, z]^{\rho(g_1)}$ is the hypersurface generated by x,

$$d = y^2 - x(2z + y),$$

$$N_1 = \prod_{a \in \mathbb{F}_p} (y + ax) = y^p - yx^{p-1},$$

$$N_2 = \prod_{a \in \mathbb{F}_p} \left(z + ay + \binom{a}{2} x \right) = z^p + \ldots,$$

subject to a relation $d^p - N_1^2 + 2x^p N_2 + f(x, d)$.
Writing $\Delta = \rho(g_2) - 1$, we have

\[
(N_1)\Delta = (\lambda^p - \lambda)x^p,
\]
\[
(d)\Delta = (\lambda^2 - \lambda - 2\mu)x^2.
\]
Writing $\Delta = \rho(g_2) - 1$, we have

\[(N_1)\Delta = (\lambda^p - \lambda)x^p,\]
\[(d)\Delta = (\lambda^2 - \lambda - 2\mu)x^2.\]

We have four cases:
Writing $\Delta = \rho(g_2) - 1$, we have

\[
(N_1)\Delta = (\lambda^p - \lambda)x^p,
\]
\[
(d)\Delta = (\lambda^2 - \lambda - 2\mu)x^2.
\]

We have four cases:

1. The generic case: Calculate over $\mathbb{F}(t, s)$ and specialise t to λ and s to μ. The ring of invariants is a hypersurface with generators in degrees $1, p, p + 2, p^2$ and a relation in degree $p(p + 2)$. The specialisation gives the correct ring of invariants for $\lambda^p - \lambda \neq 0$ and $\lambda^2 - \lambda - 2\mu \neq 0$.
Writing \(\Delta = \rho(g_2) - 1 \), we have

\[
(N_1)\Delta = (\lambda^p - \lambda)x^p, \\
(d)\Delta = (\lambda^2 - \lambda - 2\mu)x^2.
\]

We have four cases:

1. The generic case: Calculate over \(\mathbb{F}(t, s) \) and specialise \(t \) to \(\lambda \) and \(s \) to \(\mu \). The ring of invariants is a hypersurface with generators in degrees \(1, p, p + 2, p^2 \) and a relation in degree \(p(p + 2) \). The specialisation gives the correct ring of invariants for \(\lambda^p - \lambda \neq 0 \) and \(\lambda^2 - \lambda - 2\mu \neq 0 \).

2. \(\mu = \binom{\lambda}{2} \): Then \(d \) is invariant. Calculate over \(\mathbb{F}(t) \) and specialise \(t \) to \(\lambda \). The ring of invariants is a hypersurface with generators in degrees \(1, 2, p^2, p^2 \) and a relation in degree \(2p^2 \). The specialisation gives the correct ring of invariants for \(\lambda^p - \lambda \neq 0 \).
3. $\lambda^p = \lambda$: Then N_1 is invariant. By replacing g_2 with $g_1^{-\lambda}g_2$, we can assume $\lambda = 0$. Calculate over $\mathbb{F}(s)$ and specialise s to μ. The ring of invariants is a hypersurface with generators in degrees $1, p, p + 1, p^2$ and a relation in degree $p(p+1)$. The specialisation gives the correct ring of invariants for $\mu \neq 0$.

3. $\lambda^p = \lambda$: Then N_1 is invariant. By replacing g_2 with $g_1^{-\lambda}g_2$, we can assume $\lambda = 0$. Calculate over $\mathbb{F}(s)$ and specialise s to μ. The ring of invariants is a hypersurface with generators in degrees $1, p, p + 1, p^2$ and a relation in degree $p(p+1)$. The specialisation gives the correct ring of invariants for $\mu \neq 0$.

4. $\lambda^p = \lambda$ and $\mu = \binom{\lambda}{2}$: The action is not faithful. In fact

$$\mathbb{F}[x, y, z]^{\rho(G)} = \mathbb{F}[x, y, z]^{\rho(g_1)}.$$
3. $\lambda^p = \lambda$: Then N_1 is invariant. By replacing g_2 with $g_1^{-\lambda}g_2$, we can assume $\lambda = 0$. Calculate over $\mathbb{F}(s)$ and specialise s to μ. The ring of invariants is a hypersurface with generators in degrees $1, p, p + 1, p^2$ and a relation in degree $p(p+1)$. The specialisation gives the correct ring of invariants for $\mu \neq 0$.

4. $\lambda^p = \lambda$ and $\mu = \binom{\lambda}{2}$: The action is not faithful. In fact

$$\mathbb{F}[x, y, z]^{\rho(G)} = \mathbb{F}[x, y, z]^{\rho(g_1)}.$$

Remarks:
3. $\lambda^p = \lambda$: Then N_1 is invariant. By replacing g_2 with $g_1^{-\lambda}g_2$, we can assume $\lambda = 0$. Calculate over $\mathbb{F}(s)$ and specialise s to μ. The ring of invariants is a hypersurface with generators in degrees $1, p, p + 1, p^2$ and a relation in degree $p(p + 1)$. The specialisation gives the correct ring of invariants for $\mu \neq 0$.

4. $\lambda^p = \lambda$ and $\mu = \binom{\lambda}{2}$: The action is not faithful. In fact

$$\mathbb{F}[x, y, z]^{\rho(G)} = \mathbb{F}[x, y, z]^{\rho(g_1)}.$$

Remarks:

- These are a posteriori observations.
3. $\lambda^p = \lambda$: Then N_1 is invariant. By replacing g_2 with $g_1^{-\lambda}g_2$, we can assume $\lambda = 0$. Calculate over $F(s)$ and specialise s to μ. The ring of invariants is a hypersurface with generators in degrees $1, p, p + 1, p^2$ and a relation in degree $p(p+1)$. The specialisation gives the correct ring of invariants for $\mu \neq 0$.

4. $\lambda^p = \lambda$ and $\mu = \binom{\lambda}{2}$: The action is not faithful. In fact

$$F[x, y, z]^{\rho(G)} = F[x, y, z]^{\rho(g_1)}.$$

Remarks:

- These are *a posteriori* observations.

- Can we develop a framework to identify the equations that describe the generic case without computing the ring of invariants?
In the $n = 2$ case, it is possible to embed the family of representations in a larger representation: $V(\lambda) \subset W$, giving $\mathbb{F}[W] \rightarrow \mathbb{F}[V(\lambda)]$.
In the $n = 2$ case, it is possible to embed the family of representations in a larger representation: $V(\lambda) \subset W$, giving $\mathbb{F}[W] \xrightarrow{\pi} \mathbb{F}[V(\lambda)]$.

The long exact sequence coming from group cohomology gives

$$\cdots \rightarrow \mathbb{F}[W]^G \rightarrow \mathbb{F}[V(\lambda)]^G \rightarrow H^1(G, \ker(\pi)) \rightarrow H^1(G, \mathbb{F}[W]) \rightarrow \cdots$$
In the $n = 2$ case, it is possible to embed the family of representations in a larger representation: $V(\lambda) \subset W$, giving $\mathbb{F}[W] \xrightarrow{\pi} \mathbb{F}[V(\lambda)]$.

The long exact sequence coming from group cohomology gives
\[\cdots \to \mathbb{F}[W]^G \to \mathbb{F}[V(\lambda)]^G \to H^1(G, \ker(\pi)) \to H^1(G, \mathbb{F}[W]) \to \cdots \]

We can take W to be the representation
$$\rho_W(g_1) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \rho_W(g_2) = \begin{pmatrix} 1 & \alpha & \alpha^p - \alpha \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

for any $\alpha \in \mathbb{F} \setminus \mathbb{F}_p$.
In the $n = 2$ case, it is possible to embed the family of representations in a larger representation: $V(\lambda) \subset W$, giving $\mathbb{F}[W] \overset{\pi}{\to} \mathbb{F}[V(\lambda)]$.

The long exact sequence coming from group cohomology gives
\[\cdots \to \mathbb{F}[W]^G \to \mathbb{F}[V(\lambda)]^G \to H^1(G, \ker(\pi)) \to H^1(G, \mathbb{F}[W]) \to \cdots \]

We can take W to be the representation
\[
\rho_W(g_1) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \rho_W(g_2) = \begin{pmatrix} 1 & \alpha & \alpha^p - \alpha \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.
\]

for any $\alpha \in \mathbb{F} \setminus \mathbb{F}_p$.

Choose the embedding so that $\pi(x_3) = y$, $\pi(x_2) = x$ and $\pi(x_1) = cx$ where $c = (\lambda - \alpha)/(\alpha^p - \alpha)$.
In the $n = 2$ case, it is possible to embed the family of representations in a larger representation: $V(\lambda) \subset W$, giving $\mathbb{F}[W] \xrightarrow{\pi} \mathbb{F}[V(\lambda)]$.

The long exact sequence coming from group cohomology gives

$$
\cdots \to \mathbb{F}[W]^G \to \mathbb{F}[V(\lambda)]^G \to H^1(G, \ker(\pi)) \to H^1(G, \mathbb{F}[W]) \to \cdots
$$

We can take W to be the representation

$$
\rho_W(g_1) = \begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}, \quad \rho_W(g_2) = \begin{pmatrix}
1 & \alpha & \alpha^p - \alpha \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}.
$$

for any $\alpha \in \mathbb{F} \setminus \mathbb{F}_p$.

Choose the embedding so that $\pi(x_3) = y$, $\pi(x_2) = x$ and $\pi(x_1) = cx$ where $c = (\lambda - \alpha)/(\alpha^p - \alpha)$.

To verify π is a G-map:

$$
\pi(x_3 \Delta_2) = \pi(\alpha x_2 + (\alpha^p - \alpha)x_1) = (\alpha + (\alpha^p - \alpha)c)x = \lambda x.
$$
It is easy to see that $\mathbb{F}[W]^G = \mathbb{F}[x_1, x_2, N(x_3)]$ with

$$N(x_3) = \prod_{g \in G} x_3 g = x_3^{p^2} + \cdots$$
It is easy to see that \(\mathbb{F}[W]^G = \mathbb{F}[x_1, x_2, N(x_3)] \) with

\[
N(x_3) = \prod_{g \in G} x_3 g = x_3^{p^2} + \cdots
\]

and that \(\ker(\pi) = (x_1 - cx_2)\mathbb{F}[W] \).
It is easy to see that $\mathbb{F}[W]^G = \mathbb{F}[x_1, x_2, N(x_3)]$ with

$$N(x_3) = \prod_{g \in G} x_3 g = x_3^{p^2} + \cdots$$

and that $\ker(\pi) = (x_1 - cx_2)\mathbb{F}[W]$.

Thus $I := \ker(\pi)^G = (x_1 - cx_2)\mathbb{F}[W]^G$.
It is easy to see that $\mathbb{F}[W]^G = \mathbb{F}[x_1, x_2, N(x_3)]$ with

$$N(x_3) = \prod_{g \in G} x_3 g = x_3^{p^2} + \cdots$$

and that $\ker(\pi) = (x_1 - cx_2)\mathbb{F}[W]$.

Thus $I := \ker(\pi)^G = (x_1 - cx_2)\mathbb{F}[W]^G$.

Hence $\mathbb{F}[W]^G/I \cong \mathbb{F}[x, \pi(N(x_3))]$.
It is easy to see that $\mathbb{F}[W]^G = \mathbb{F}[x_1, x_2, N(x_3)]$ with

$$N(x_3) = \prod_{g \in G} x_3g = x_3^{b^2} + \cdots$$

and that $\ker(\pi) = (x_1 - cx_2)\mathbb{F}[W]$.

Thus $I := \ker(\pi)^G = (x_1 - cx_2)\mathbb{F}[W]^G$.

Hence $\mathbb{F}[W]^G/I \cong \mathbb{F}[x, \pi(N(x_3))]$.

Therefore, if $\lambda \in \mathbb{F} \setminus \mathbb{F}_p$ then π^G is surjective.
It is easy to see that $\mathbb{F}[W]^G = \mathbb{F}[x_1, x_2, N(x_3)]$ with

$$N(x_3) = \prod_{g \in G} x_3 g = x_3^{p^2} + \cdots$$

and that $\ker(\pi) = (x_1 - cx_2)\mathbb{F}[W]$.

Thus $I := \ker(\pi)^G = (x_1 - cx_2)\mathbb{F}[W]^G$.

Hence $\mathbb{F}[W]^G/I \cong \mathbb{F}[x, \pi(N(x_3))]$.

Therefore, if $\lambda \in \mathbb{F} \setminus \mathbb{F}_p$ then π^G is surjective.

However, if $\lambda \in \mathbb{F}_p$ then $y^p - x^{p-1}y \in \mathbb{F}[V(\lambda)]^G \setminus \text{im}(\pi^G)$,
It is easy to see that $\mathbb{F}[W]^G = \mathbb{F}[x_1, x_2, N(x_3)]$ with
\[N(x_3) = \prod_{g \in G} x_3 g = x_3^{p^2} + \cdots \]
and that $\ker(\pi) = (x_1 - cx_2)\mathbb{F}[W]$.
Thus $I := \ker(\pi)^G = (x_1 - cx_2)\mathbb{F}[W]^G$.
Hence $\mathbb{F}[W]^G/I \cong \mathbb{F}[x, \pi(N(x_3))]$.
Therefore, if $\lambda \in \mathbb{F} \setminus \mathbb{F}_p$ then π^G is surjective.
However, if $\lambda \in \mathbb{F}_p$ then $y^p - x^{p-1}y \in \mathbb{F}[V(\lambda)]^G \setminus \text{im}(\pi^G)$,
i.e., there is a class $\chi \in H^1(G, \ker(\pi))$ which is zero in $H^1(G, \mathbb{F}[W])$.

It is easy to see that $\mathbb{F}[W]^G = \mathbb{F}[x_1, x_2, N(x_3)]$ with

$$N(x_3) = \prod_{g \in G} x_3 g = x_3^p + \cdots$$

and that ker(π) = $(x_1 - cx_2)\mathbb{F}[W]$.

Thus $I := \ker(\pi)^G = (x_1 - cx_2)\mathbb{F}[W]^G$.

Hence $\mathbb{F}[W]^G/I \cong \mathbb{F}[x, \pi(N(x_3))]$.

Therefore, if $\lambda \in \mathbb{F} \setminus \mathbb{F}_p$ then π^G is surjective.

However, if $\lambda \in \mathbb{F}_p$ then $y^p - x^{p-1}y \in \mathbb{F}[V(\lambda)]^G \setminus \text{im}(\pi^G)$, i.e., there is a class $\chi \in H^1(G, \ker(\pi))$ which is zero in $H^1(G, \mathbb{F}[W])$.

I am still looking for the analog of W for the three variable case.