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Abstract. We consider the problem of describing all non-negative integer solutions toa linear congruence in many variables. This question may be reduced to solving the con-gruence x1+2x2+3x3+: : :+(n�1)xn�1 � 0 (mod n) where xi 2 N = f0; 1; 2; : : :g. Weconsider the monoid of solutions of this equation and prove equivalent two conjecturesof Elashvili concerning the structure of these solutions. This yields a simple algorithmfor generating most (conjecturally all) of the high degree indecomposable solutions ofthe equation.

1. Introduction
Let N := f0; 1; 2; : : :g denote the non-negative integers and let n be a positive inte-ger. We consider the problem of �nding all non-negative integer solutions to a linearcongruence w1x1 + w2x2 + : : :+ wrxr � 0 (mod n)where the coe�cients w1; w2; : : : ; wn are all integers. By a non-negative integer solution,we of course mean an r-tupleA = (a1; a2; : : : ; ar) 2 Nr such that w1a1+w2a2+: : :+wrar �0 (mod n).As one would expect from such a basic question, this problem has a rich history. Theearliest published discussion of this problem known to the authors was by Carl W.Strom in 1931 ([St1]). A number of mathematicians have considered this problem.Notably Paul Erd�os, Jacques Dixmier, Jean-Paul Nicolas ([DEN]), VictorKac, Richard Stanley ([K]) and Alexander Elashvili ([E]).V. Tsiskaridze ([T]) performed a series of computer computations for all values ofn < 65. Partially inspired by these computer calculations Elashvili made a numberof fascinating conjectures concerning the structure of the monoid of solutions. Herewe prove two of these conjectures are equivalent. This allows us to construct most(conjecturally all) of the \large" indecomposable solutions by a very simple algorithm.Also of interest are the papers [EJ1], [EJ2] by Elashvili and Jibladze and [EJP]by Elashvili, Jibladze and Pataraia where the \Hermite reciprocity" exhibited bythe monoid of solutions is examined.

2. Preliminaries
We take N = f0; 1; 2; : : :g and let n be a positive integer. Consider the linear congru-ence

(2.0.1) w1x1 + w2x2 + : : :+ wrxr � 0 (mod n)
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where w1; w2; : : : ; wr 2 Z and x1; x2; : : : ; xn are unknowns. We want to describe allsolutions A = (a1; a2; : : : ; an�1) 2 Nr to this congruence.Clearly all that matters here is the residue class of the wi modulo n and thus we mayassume that 0 � wi < n for all i. Also if one of the wi is divisible by n then the equationimposes no restriction whatsoever on xi and thus we will assume that 1 � wi < n for alli. If w1 = w2 then we may replace the single equation (2.0.1) by the pair of equations

w1y1 + w3x3 + : : :+ wrxr � 0 (mod n) and x1 + x2 = y1:Thus we may assume that the wi are distinct and so we have reduced to the case wherefw1; : : : ; wrg is a subset of f1; 2; :::; n� 1g. Now we consider
(2.0.2) x1 + 2x2 + 3x3 + : : :+ (n� 1)xn�1 � 0 (mod n)
The solutions to (2.0.1) are the solutions to (2.0.2) with xi = 0 for all i =2 fw1; : : : ; wrg.Hence to solve our original problem it su�ces to �nd all solutions to Equation (2.0.2).

3. Monoid of Solutions
We let M denote the set of all solutions to Equation (2.0.2),

M := f~x 2 Nn�1 j x1 + 2x2 + : : :+ (n� 1)xn�1 � 0 (mod n)g :
Clearly M forms a monoid under componentwise addition, i.e., M is closed under thisaddition and contains an additive identity, the trivial solution 0 = (0; 0; : : : ; 0).In order to describe all solutions of (2.0.2) explicitly we want to �nd the set of minimalgenerators of the monoid M . We denote this set of generators by IM . We say that anon-trivial solution A 2 M is decomposable if A can be written as non-trivial sum of twoother solutions: A = B+C where B;C 6= 0. Otherwise we say that A is indecomposable(also called non-shortenable in the literature). Thus IM is the set of indecomposablesolutions.We de�ne the degree (also called the height in the literature) of a solution A =(a1; a2; : : : ; an�1) 2 M by deg(A) = a1 + a2 + : : : + an�1 and we denote the set ofsolutions of degree k by M(k) := fA 2 M j deg(A) = kg. Similarly, we let IM(k)denote the set of indecomposable solutions of degree k: IM(k) = IM \M(k).Gordan's Lemma [G] states that there are only �nitely many indecomposable solutions,i.e., that IM is �nite. This is also easy to see directly as follows. The extremal solutionsE1 := (n; 0; : : : ; 0), E2 := (0; n; 0; : : : ; 0), : : :, En�1 := (0; 0; : : : ; 0; n) show that anyindecomposable solution, (a1; a2; : : : ; an) must satisfy ai � n for all i.In fact, Emmy Noether [N] showed that if A is indecomposable then deg(A) � n.Furthermore A is indecomposable with deg(A) = n if and only if A is an extremalsolution Ei with gcd(i; n) = 1. For a simple proof of these results see [S].We de�ne the multiplicity of a solution A, denoted m(A) by

m(A) := a1 + 2a2 + : : :+ (n� 1)an�1n :
Example 3.1. Consider n = 4. Here IM = fA1 = (4; 0; 0); A2 = (0; 2; 0); A3 =(0; 0; 4); A4 = (1; 0; 1); A5 = (2; 1; 0); A6 = (0; 1; 2)g. The degrees of these solutionsare 4; 2; 4; 2; 3; 3 respectively and the multiplicities are 1; 1; 3; 1; 1; 2 respectively.
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Let F (n) denote the number of indecomposable solutions to Equation (2.0.2), F (n) :=#IM . Victor Kac [K] showed that the number of minimal generators for the ring ofinvariants of SL(2;C) acting on the space of binary forms of degree d exceeds F (d� 2)if d is odd. Kac credits Richard Stanley for observing that if A is a solution ofmultiplicity 1 then A is indecomposable. This follows from the fact that the multiplicityfunction m is a homomorphism of monoids from M to N and 1 is indecomposable inN. Kac also observed that the extremal solutions Ei (de�ned in Section 3 above) withgcd(i; n) = 1 are also indecomposable. This gave Kac the lower bound F (n) � p(n) +�(n)� 1 where p(n) denotes the number of partitions of n.Much of the interest has centred on studying the asymptotics of the function F (n).Dixmier, Erd�os andNicholas studied the function F (n) and signi�cantly improvedKac's lower bound ([DEN]). They were able to prove that

limn!1 inf F (n) � � n1=2log n � log log np(n)
��1 > 0 :

Dixmier and Dixmier and Nicholas have also published a sequence of papers ([D1,D2, D3, D4, D5, D6, DN1, DN2, DN3]) which give more information about the asymp-totics of F (n). The lower bound quoted above from [DEN] is established by consider-ing only solutions of level one (the level of a solution is de�ned in the next section).Tsiskaridze ([T]) performed a number of computer calculations which determined thevalues of F (n) for n < 65. These computations show that the solutions of level one con-stitute an increasingly smaller proportion of all solutions as n increases. This suggeststhat the asymptotics of F (n) may be qualitatively bigger than this lower bound.
4. The Automorphism Group

Let G := Aut(Z=nZ). The order of G is given by �(n) where � is the Euler phifunction, also called the totient function. The elements of G may be represented bythe �(n) positive integers less than n and relatively prime to n. Each such integer ginduces a permutation, � = �g, of f1; 2; : : : ; n � 1g given by �(i) � gi (mod n). LetA = (a1; a2; : : : ; an�1) 2 M , i.e., a1 + 2a2 + : : :+ (n� 1)an�1 � 0 (mod n). Multiplyingthis equation by g gives (g)a1 + (2g)a2 + (3g)a3 + : : : + (gn � g)an�1 � 0 (mod n).Reducing these new coe�cients modulo n and reordering this becomes a��1(1)+2a��1(2)+: : : + (n � 1)a��1(n�1) � 0 (mod n). Thus if A = (a1; a2; : : : ; an�1) 2 M then g � A :=(a��1(1); a��1(2); : : : ; a��1(n�1)) 2 M . If g 2 G and A = B+C is a decomposable solution,then g � A = g �B + g � C and therefore G preserves IM and each IM(k).The action of G was used by Dixmier, Erd�os and Nicolas in [DEN]. Furthermore,Elashvili and Jibladze proved in [EJ1] that this group is the full automorphism groupof M .Let g 2 G. Since g � A is a permutation of A, the action of G on M preserves degree,and thus G also acts on each M(k) for k 2 N. Note however that the action does notpreserve multiplicities in general.
Example 4.1. Consider n = 9. Here G is represented f1; 2; 4; 5; 7; 8g and the correspond-ing six permutations of Z=9Z are given by �1 = e, �2 = (1; 2; 4; 8; 7; 5)(3; 6), �4 = �22 =(1; 4; 7)(2; 8; 5)(3)(6), �5 = �52 = (1; 5; 7; 8; 4; 2)(3; 6), �7 = �42 = (1; 7; 4)(2; 5; 8)(3)(6)
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and �8 = �32 = (1; 8)(2; 7)(3; 6); (4; 5). Thus, for example, 2�(a1; a2; a3; a4; a5; a6; a7; a8) =(a5; a1; a6; a2; a7; a3; a8; a4) and 4�(a1; a2; a3; a4; a5; a6; a7; a8) = (a7; a5; a3; a1; a8; a6; a4; a2).
Note that G always contains the element n � 1 which is of order 2 and which wealso denote by �1. This element induces the permutation ��1 which acts via �1 �(a1; a2; : : : ; an�1) = (an�1; an�2; : : : ; a3; a2; a1).It is tempting to think that the G-orbits of the multiplicity 1 solutions would compriseall elements of IM . This is not true however. Consider n = 6. Then G is a group oforder 2, G = f1;�1g. The solutions A1 = (1; 0; 1; 2; 0) and A2 = �1 � A1 = (0; 2; 1; 0; 1)are both indecomposable and both have multiplicity 2.We de�ne the level of a solution A, denoted `(A), by `(A) = minfm(g(A)) j g 2 Gg.Note thatm(A)+m(�1�A) = deg(A). This implies 2PB2G�Am(B) = deg(A)#(G�A),i.e., that the average multiplicity of the elements in the G-orbit of A is half the degreeof A.

5. Elashvili's conjectures
Elashvili ([E]) made a number of interesting and deep conjectures concerning thestructure of the solutions to Equation (2.0.2). Here we will consider two of his conjectures.In order to state these conjectures we will denote by p(t) the number of partitions of theinteger t. We also use bn=2c to denote the greatest integer less than or equal to n=2 andde�ne dn=2e := n� bn=2c.Conjecture 1: If A 2 IM(k) where k � bn=2c+ 2 then `(A) = 1.Conjecture 2: If k � bn=2c+ 2 then IM(k) contains exactly �(n)p(n� k) elements.Here we prove these two conjectures are equivalent. Furthermore we will show that ifk � dn=2e+1 then every orbit of level 1 contains exactly one multiplicity 1 element andhas size �(n). Thus if k � dn=2e + 1 then IM(k) contains exactly �(n)p(n� k) level 1solutions.This gives a very simple and fast algorithm to generate all the level 1 solutions whosedegree, k, is at least dn=2e+ 1 as follows. For each partition, n� k = b1 + b2 + � � �+ bs,of n� k put bs+1 = � � � = bk = 0 and de�ne ci := bi + 1 for 1 � i � k. Then de�ne A viaai := #fj : cj = ig. This constructs all multiplicity 1 solutions if k � dn=2e + 1. Nowuse the action of G to generate the �(n) solutions in the orbit of each such multiplicity1 solution.If the above conjectures are true then this algorithm rapidly produces all elements ofIM(k) for k � bn=2c + 2. This is surprising, since without relying on the conjectures,the computations required to generate the elements of IM(k) become increasingly hardas k increases.

6. Proof of Equivalence of the Conjectures
Before proceeding further we want to make a change of variables. Suppose then thatA 2 M(k). We interpret the solution A as a partition of the integer m(A)n into k parts.This partition consists of a1 1's, a2 2's,: : : ; and an�1 (n-1)'s. We write this partition asan unordered sequence (or multi-set) of k numbers:

[y1; y2; : : : ; yk] = [1; 1; : : : ; 1| {z }a1 ; 2; 2; : : : ; 2| {z }a2 ; : : : ; (n� 1); (n� 1); : : : ; (n� 1)| {z }an�1
]
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The integers y1; y2; : : : ; yk with 1 � yi � n � 1 for 1 � i � k are our new variables fordescribing A. Given [y1; y2; : : : ; yk] we may easily recover A since ai := #fj j yj = ig.We have y1 + y2 + : : :+ yk = m(A)n.Notice that the sequence y1 � 1; y2 � 1; : : : ; yk � 1 is a partition of m(A)n � k. Fur-thermore, every partition of m(A)n� k arises from a partition of m(A)n into k parts inthis manner.The principal advantage of this new description for elements of M is that it makes theaction of G on M more tractable. To see this let g 2 G be a positive integer less than nand relatively prime to n. Then g � [y1; y2; : : : ; yk] = [gy1 (mod n); gy2 (mod n); : : : ; gyk(mod n)].Now we proceed to give our proof of the equivalence of Elashvili's conjectures.
Proposition 6.1. Let A 2 M(k) and let 1 � g � n� 1 where g is relatively prime to nrepresent an element of G. Write B = g �A, and u = m(A) and v = m(B). If k � gu�vthen ug2 � (k + u+ v)g + v(n+ 1) � 0.
Proof. Write A = [y1; y2; : : : ; yk] where y1 � y2 � : : : � yk. For each i with 1 � i � k weuse the division algorithm to write gyi = qin + ri where qi 2 N and 0 � ri < n. ThenB = [r1; r2; : : : ; rk]. Note that the ri may fail to be in decreasing order and also that nori can equal 0.Now gun = g(y1 + y2 + : : : + yk) = (q1n + r1) + (q2n + r2) + : : : + (qkn + rk) =(q1 + q2 + : : :+ qk)n+ (r1 + r2 + : : :+ rk) where r1 + r2 + : : :+ rk = vn.Therefore, gu = (q1 + q2 + : : :+ qk) + v.Since y1 � y2 � : : : � yk, we have q1 � q2 � : : : � qk. Therefore from gu�v =Pki=1 qiwe conclude that qi = 0 for all i > gu� v. Thereforegu�vX

i=1 gyi = g gu�vX
i=1 [(yi � 1) + 1]

= g ug�vX
i=1 (yi � 1) + g(gu� v)

� g kX
i=1 (yi � 1) + g(gu� v)

= g(un� k) + g2u� gv
Also gu�vX

i=1 gyi = gu�vX
i=1 (qin+ ri)

= (gu� v)n+ gu�vX
i=1 ri

� gun� vn+ gu� v
Combining these formulae we obtain the desired quadratic condition ug2 � (k + u +v)g + v(n+ 1) � 0. �
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Now we specialize to the case u = v = 1. Thus we are considering a pair of solutionsA and B = g � A both of degree k and both of multiplicity 1.

Lemma 6.2. Let A 2 M(k) be a solution of multiplicity 1. Write A = [y1; y2; : : : ; yk]where y1 � y2 � � � � � yk. If k � bn=2c+ 2 then yk�2 = yk�1 = yk = 1. If k � dn=2e+ 1then yk�1 = yk = 1.
Proof. First suppose that k � bn=2c + 2 and assume, by way of contradiction, thatyk�2 � 2. Then n = (y1+y2+: : :+yk�2)+yk�1+yk � 2(k�2)+1+1 � 2bn=2c+2 � n+1.Similarly if k � dn=2e + 1 we assume, by way of contradiction, that yk�1 � 2. Thenn = (y1 + y2 + : : :+ yk�1) + yk � 2(k � 1) + 1 � 2(dn=2e) + 1 � n+ 1. �

Proposition 6.3. Let A 2 M(k) be a solution of multiplicity 1 where k � dn=2e + 1.Then the G-orbit of A contains no other element of multiplicity 1. Furthermore, G actsfaithfully on the orbit of A and thus this orbit contains exactly �(n) elements.
Proof. Let B = g � A where 1 � g � n � 1 and g represents an element of G. Furthersuppose B has multiplicity 1. Lemma 6.2 implies that B = g �A = [r1; r2; : : : ; rk�2; g; g].Since B has multiplicity 1, we have n = r1+ r2+ : : :+ rk�2+ g+ g � 2g+k� 2 and thusg � (n � k + 2)=2 � k=2. From this we see that the hypothesis k � gu � v is satis�ed.Therefore by Proposition 6.1, g and k must satisfy the quadratic condition

g2 � (k + 2)g + (n+ 1) � 0 :
Let f denote the real valued function f(g) = g2 � (k + 2)g + (n + 1). Then f(1) =n� k � 0 and f(2) = n + 1� 2k < 0 and thus f has a root in the interval [1,2). Sincethe sum of the two roots of f is k + 2 we see that the other root of f lies in the interval(k; k+ 1]. Thus our quadratic condition implies that either g � 1 or else g � k+ 1. Butwe have already seen that g � k=2 and thus we must have g = 1 and so A = B.This shows that the G-orbit of A contains no other element of multiplicity 1. Further-more, G acts faithfully on this orbit and thus it contains exactly �(n) elements. �

Remark 6.4. Of course the quadratic condition ug2 � (k + u + v)g + v(n + 1) � 0 canbe applied to cases other than u = v = 1. For example, taking u = v = 2 one can showthat a solution of degree k (and level 2) with k � (2n+ 8)=3 must have an orbit of size�(n) or �(n)=2.
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