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Section 0. Introduction
The following example provided the motivation for this paper. Let F8 be the field with

8 elements, and let F∗
8 be its group of units which acts on F8 via left multiplication. The

cohomology ring H∗(F8 ×7 F∗
8; F2) ∼= F2[x1, x2, x3]Z/7 is of much interest to topologists

([A], [CS], [M]). It is a straight forward exercise to construct minimal sets of homogeneous
generators and relations for this ring: there are 13 generators and 54 relations. The
surprising fact is that the minimal relations exhibit a certain internal duality:

d : 8 9 10 11 12 13 14
β1d : 3 6 12 12 12 6 3.

Here β1d denotes the number of minimal relations of degree d. In fact this internal duality
holds for each of the terms of the minimal Hilbert syzygy resolution of this ring (see Section
7).

In this paper, we exhibit an infinite family of rings of invariants whose minimal reso-
lutions exhibit internal duality. Specifically, fix a positive integer n, let N = 1 + n + n2,
and let k be a field containing a primitive N -th root of unity, ω. Let G be the cyclic group
generated by diag(ω, ωn, ωn2

) ∈ SL3(k), the special linear group of 3× 3 matrices over k,
and let Bn = k[x1, x2, x3]G be the associated ring of invariants.

Theorem 0.1. The minimal resolution of Bn exhibits internal duality.

To prove this, we construct an explicit minimal resolution for Bn. Along the way, we
construct minimal resolutions for the following two families of monomial rings: Bs

1 = A/I1

and Bs
2 = A/I2, where A = k[y1, . . . , ys], I1 is the ideal generated by {yiyj | i 6= j},

and I2 is the ideal generated by {yiyj | i 6≡ j − 1, j, j + 1 mod s}. These resolutions
are of independent interest. For example, there are many other rings of invariants whose
resolutions can be determined from our resolution of Bs

2.
The organization of the paper follows. In Section 1, we recall the definitions and

general properties of Hilbert syzygy resolutions and define internal duality. In Section 2,
we discuss resolutions for rings of invariants and give a couple of examples. In Sections
3 and 4, we construct minimal resolutions for Bs

1 and Bs
2. At the ends of these sections,

our resolutions are compared to the resolutions constructed by Eagon–Northcott ([EN] or
[ERS]) and Behnke ([B]). In Section 5, we show how to construct the minimal resolution
of Bn from the resolution of B3n+6

2 , and we prove that Bn’s resolution exhibits internal
duality. The proof of Proposition (5.4) is delayed until Section 6. Finally, in Section 7 we
investigate the motivating example H∗(F8 ×7 F∗

8; F2) in detail.

*The authors are partially supported by N.S.E.R.C. research grants
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In [CHPS], a minimal set of generators for the ring of invariants H∗(F2n ×7 F∗
2n ;F2)

was characterized by analyzing the associated ring of Laurant polynomials. In [CHW],
similar results are obtained for k[x1, . . . , xn]G, when G ⊆ GLn(k) is any non-modular
abelian group.

The computer programs Macaulay, Maple, and Mathematica were used for various
computations during this work; however, none of our proof rely on these calculations.

Section 1. Minimal resolutions, Gorenstein rings, and internal duality
A reference for much of this section and the next is [S]. Let k be any field, and let

B = B0 ⊕ B1 ⊕ · · · be an N-graded k-algebra. Given a set γ1, γ2, . . . , γs of homogeneous
generators for B, with deg γi > 0, form new indeterminants y1, . . . , ys and let A denote the
polynomial ring A = k[y1, . . . , ys] with an N-grading A0⊕A1⊕· · · given by deg yi = deg γi.
Define an A-module structure on B by the conditions yif = γif for all f ∈ B. As an A-
module B is generated by the single element 1. Hence B is isomorphic to a quotient ring
A/J of A, where J is a homogeneous ideal of A. The elements of J are called the syzygies
of the first kind.

The Hilbert syzygy theorem implies that there is an exact sequence of A-modules,

(1.1) 0−→Mh
dh−→Mh−1−→ · · · −→M1

d1−→M0
d0−→B−→0,

where h ≤ s and each Mi is a finitely-generated free A-module. This exact sequence,
sometimes denoted (M∗, d∗), is called a finite free resolution of B (as an A-module). By
an appropriate choice of the degrees of the free generators of each Mi, the Mi’s become
N-graded A-modules, and the homomorphisms di preserve degree. We will always suppose
that (1.1) has been chosen so that each di preserves degree.

The homomorphisms di may be regarded as specifying the syzygies of the ith kind.
We may think of constructing (1.1) by finding, M0,M1, . . . ,Mh in turn. Once we have
found Mi and di, pick any set of homogeneous generators for ker di and let a basis for
Mi+1 map onto these generators. If at each stage we chose a minimal set of generators for
ker di, then (1.1) is called a minimal free resolution of B (as an A-module). A minimal
free resolution (1.1) of B is unique, in the sense that if

0−→Nj
ch−→Nj−1−→ · · · −→N1

c1−→N0
c0−→B−→0

is another one, with Mh 6= 0 and Nj 6= 0, then h = j and there are degree-preserving
A-module isomorphisms Mi−→Ni making the following diagram commute:

0−→Mh
dh−→Mh−1−→· · ·−→M1

d1−→M0
d0−→B−→ 0y∼= y∼= y∼= y∼= y∼=

0−→Nh
ch−→Nh−1 −→· · ·−→N1

c1−→N0
c0−→B−→0.

In particular, the minimum number of generators of Mi and the degrees of these generators
are uniquely determined in a minimal free resolution. The minimum number of generators
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(or rank) of Mi is called the ith Betti number of B (as an A-module) and is denoted
βA

i (B). The number of generators of Mi having degree j is called the (i, j)th internal
Betti number of B and is denoted βA

i,j(B). If we have chosen γ1, γ2, . . . , γs to be a minimal
set of generators for B (as a k-algebra), then it turns out that the βA

i (B) and the βA
i,j(B)

depend only on B, not on the choice of the γi’s. In this case we write βi(B) for βA
i (B) and

βi,j(B) for βA
i,j(B). Note that since B is generated as an A-module by the single element

1, we always have β0(B) = β0,0(B) = 1.
The least integer h for which (1.1) exists (equivalently, the greatest integer h for which

βA
h (B) 6= 0) is called the homological dimension of B (as an A-module), denoted hdA(B).

As before we write hd(B) when {γ1, . . . , γs} is minimal.
Once we have chosen bases for the Mi’s in (1.1), we may regard elements of Mi as

column vectors and represent the map di (i ≥ 1) as a t × r matrix, where r = rank(Mi)
and t = rank(Mi−1). The entries of the matrix di will be homogeneous elements of A. It
is easy to see that the resolution (1.1) is minimal if and only if all of the entries of each di

have positive degree (allowing the element 0 as an entry). Equivalently, no entry of any di

can be a nonzero element of k. We will use this fact a number of times in this paper, so
we state it formally:

Minimality Criterion 1.2. The resolution (1.1) is minimal if and only if the non-zero
entries of each of the di have positive degree.

Remark 1.3. When the resolution (1.1) is minimal, it follows that the rank of Mi, that is,
the i-th Betti number βi, equals the dimension of the torsion group TorA

i (B,k). Since the
resolution is graded, this torsion group has an internal grading and the (i, j)-th internal
Betti number, βi,j , equals the dimension of the degree j subspace of TorA

i (B,k).

The Krull dimension of B, denoted dim(B), is the maximum number of elements
of B which are algebraically independent over k. A set {θ1, . . . , θm} of m = dim(B)
homogeneous elements of positive degree is said to be a homogeneous system of parameters,
if B is a finitely generated module over the subalgebra k[θ1, . . . , θm]. For this to happen, the
θ1, . . . , θm must be algebraically independent. The Noether Normalization Lemma implies
that a homogeneous system of parameters for B always exists. The algebra B is called
Cohen-Macaulay if B is a free module (necessarily finitely generated) over k[θ1, . . . , θm].

A Cohen-Macaulay N-graded k-algebra B is called Gorenstein if its highest non-
zero Betti number, βh(B) equals 1. In this case, one can show that the minimal free
resolution (1.1) for B is self dual; that is, with the correct choice of bases for the modules
Mi and M∗

j = Hom(Mj ,k), the matrices di and d∗h+1−i are identical. In particular,
rank(Mi) = rank(Mh−i), so we obtain the result that if B is Gorenstein, then

(1.4) βi(B) = βh−i(B), 0 ≤ i ≤ h.

Definition 1.5. We will say that the Gorenstein algebra B exhibits internal duality if, for
each i, there exists an integer hi, such that βi,j = βi,hi−j for all j.

The following is one of the simplest and most useful complexes of free modules.
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Example 1.6. Let J be a homogeneous ideal in the graded ring A = k[y1, . . . , ys] and
let d0:A−→B = A/J be the canonical surjection. Let {z1, . . . , zt} be a minimal set of
(homogeneous) positive degree generators for J . The Koszul complex of {z1, . . . , zt} has
the form:

(1.7) 0−→Mt
dt−→Mt−1−→ · · · −→M1

d1−→M0
d0−→B−→0,

where Mi is a free A-module of rank
(
t
i

)
with basis { (a1, . . . , ai) | 1 ≤ a1 < · · · < ai ≤ t }.

The maps di:Mi−→Mi−1 are given by

di

(
(a1, . . . , ai)

)
=

i∑
j=1

(−1)j+1zaj
(a1, . . . , âj , . . . , ai),

where âj denotes that aj is missing.

It is straightforward to check that didi+1 = 0, so (M∗, d∗) is a complex. If (1.7) is
exact, then Criterion (1.2) implies that (M∗, d∗) is a minimal resolution of B (as an A-
module). This is the case, for example, when B = k and {z1, . . . , zt} is {y1, . . . , ys} or
when B = k[yl] and {z1, . . . , zt} is {y1, . . . , ŷl, . . . , ys}. These two resolutions will be used
later in the paper.

It is sometimes convenient to identify the Koszul complex with Λ(z1, . . . , zt), the
exterior algebra over A. The basis element (a1, . . . , ai) in Mi corresponds to the wedge
product za1 ∧· · ·∧zai in Λi. Using this identification, we see that, if 1 ≤ a1 < · · · < ai ≤ s,
then we can let the symbol (aσ(1), . . . , aσ(i)) stand for the element (−1)σ(a1, . . . , ai) in Mi.

Proposition 1.8. Let B be a graded k-algebra minimally generated by s homogeneous
elements of positive degree. Let A = k[y1, . . . , ys] and let d0:A → B be the usual surjection.
Let {z1, . . . , zt} be a minimal set of (homogeneous) generators for the kernel of d0 and
suppose that the Koszul complex of {z1, . . . , zt} is a minimal resolution of B. Then (i) B
is Gorenstein and (ii) B exhibits internal duality if and only if there exists an integer h1

with β1,j = β1,h1−j for all j.

Proof. The fact that B is Gorenstein follows directly from the definition.
Assuming β1,j = β1,h1−j , we can define a pairing on the basis elements {(1), . . . , (t)} of

M1, (a) 7→ (a∗), having the properties (i) deg(a)+deg(a∗) = h1 and (ii) (a∗∗) = (a). Then
on Mi we have the pairing (a1, . . . , ai) ↔ (a∗1, . . . , a

∗
i ). Since the degree of the generator

(a1, . . . , ai) of Mi is
∑i

j=1 deg(zaj
) it follows that βi,j = βi,hi−j for all i and j, where

hi = ih1.
This result suggests the possibility that B exhibits internal duality whenever h1 can

be found. However, this is false as shown by Example (2.3) below.

Section 2. Rings of invariants
Let R = k[x1, . . . , xm], and let V denote the vector space of linear forms in R. Then

GL(V ) = GLm(k) acts on V and the action of M ∈ GL(V ) extends uniquely to an algebra
automorphism of R. The set of all polynomials f ∈ R satisfying Mf = f for all M in
some subgroup G of GL(V ) forms a subalgebra RG of R called the algebra of invariants
of G. When the group G is finite and its order is relatively prime to the characteristic of
k, the algebra RG has many nice properties.
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Proposition 2.1. (see [S]) Let R = k[x1, . . . , xm], let G be a finite subgroup of GLm(k),
and let char(k) be relatively prime to g = |G|. Then
(i) RG is Cohen-Macaulay and has Krull dimension m,
(ii) if G ⊆ SL(V ), then RG is Gorenstein, and
(iii) if RG is minimally generated by s homogeneous elements, then hd(RG) = s−m.

The following ring of invariants illustrates the above proposition and also exhibits
internal duality.

Example 2.2. Let k be a field containing a primitive sixth root of unity ω, let G ⊆ SL3(k)
be the cyclic group generated by diag(ω, ω2, ω3), and let B = k[x1, x2, x3]G. Then B has
a vector space basis consisting of the monomials

{xε1
1 xε2

2 xε3
3 | ε1 + 2ε2 + 3ε3 ≡ 0 mod 6}.

A minimal algebra generating set for B is given by γ1 = x2
3, γ2 = x3

2, γ3 = x1x2x3, γ4 =
x2

1x
2
2, γ5 = x3

1x3, γ6 = x4
1x2, and γ7 = x6

1. Let A = k[y1, . . . , y7] with deg(yj) = deg(γj).
Then the minimal A resolution of B has the form:

0−→A
d4−→A9 d3−→A16 d2−→A9 d1−→A

d0−→B−→0,

with internal Betti numbers as follows.

d : 0 . . . 6 7 8 9 10 11 12 13 14 15 16 17 18 . . . 24
β0d : 1
β1d : 1 2 3 2 1
β2d : 2 4 4 4 2
β3d : 1 2 3 2 1
β4d : 1

The maps are given in the Appendix. Note that the maps d1 and d4 have polynomial
degree 2 while d2 and d3 are linear. The resolutions of Bs

2 and Bn which will be constructed
in later sections also have this property – the first and last maps are quadratic while the
other maps are linear. Resolutions where each map has a fixed polynomial degree are
called pure (see [W], Remarks 1.8).

The following is an example of a ring of invariants which is Gorenstein, has M1

internally dual, but doesn’t have M2 internally dual. This example was constructed by
tensoring two rings of invariants together in such a way that their relations added up
to a dual M1. We thank Don Stanley for suggesting this approach. Explicitly, take
B1 = k[x1, x2, x3]G1 where G1 is the cyclic group generated by diag(ω1, ω

4
1 , ω5

1) with ω1 a
primitive 10-th root of unity, and take B2 = k[x4, x5]G2 where G2 is the group generated
by diag(ω2, ω

8
2) with ω2 a primitive 9-th root of unity. Then B = B1 ⊗B2 below.

Example 2.3. Let k be a field containing a primitive 90-th root of unity ω, let G ⊆ SL5(k)
be the group generated by diag(ω9, ω36, ω45, ω10, ω80), and let B = k[x1, x2, x3, x4, x5]G.
Then B is minimally generated by 10 elements having degrees 2, 2, 3, 4, 5, 6, 7, 9, 9, 10 and
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the minimal resolution of B as a module over A = k[y1, . . . , y10] has length 5, Betti numbers
1, 10, 25, 25, 10, 1 and the following set of internal Betti numbers.

d : 0 d : 6 7 8 9 10 11 12 13 14 15 16 17 18
β0d : 1 β1d : 1 1 1 1 2 1 1 1 1

d : 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
β2d : 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1 2 1 1 1

d : 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
β3d : 1 1 1 2 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1

d : 34 35 36 37 38 39 40 41 42 43 44 45 46 d : 52
β4d : 1 1 1 1 2 1 1 1 1 β5d : 1

Section 3. The minimal resolution of Bs
1

Let A = k[y1, . . . , ys], and let I1 be the ideal generated by {yiyj | i 6= j}. In this
section, we determine a minimal resolution of Bs

1 = A/I1. This resolution will not be
used elsewhere in the paper. The main reason for including it is to introduce certain
constructions that will be used to construct the resolution of Bs

2 in the next section. For
the remainder of this section, we fix s ≥ 2 and write B = Bs

1. Also, we take A and B
graded via deg(yi) = 1.

To begin the resolution, let N0 = A and let c0:A−→B = A/I be the quotient map. Let
N1 be the free module with basis {(a1, a2) | 1 ≤ a1 < a2 ≤ s} and let c1

(
(a1, a2)

)
= ya1ya2 .

Then N1
c1−→N0

c0−→B−→0 is exact. The kernel of c1 is minimally spanned by the elements
κ1 = ya3(a1, a2) − ya2(a1, a3) and κ2 = ya3(a1, a2) − ya1(a2, a3) where a1 < a2 < a3. For
N2, we take ordered triples (a1, a2, a3) as basis elements. However, we need two elements
associated to the entries a1, a2, a3 to hit the two kernel elements κ1 and κ2 listed above.
We choose to decorate the triples with bars to allow for this. That is, N2 is spanned by
the symbols (a1, a2, a3) and (a1, a2, a3) mapping via c2 to κ1 and κ2, respectively. (A bar
over ai indicates that yai does not appear as a coefficient in the differential.) Continuing
in this way, we can determine the complete resolution.

Example 3.1. The minimal resolution of B has the form

0−→Ns−1
cs−1−−→Ns−2

cs−2−−→ · · · −→N2
c2−→N1

c1−→N0
c0−→B−→0,
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where rank Ni = i
(

s
i+1

)
, the map c1 is quadratic, and the maps ci, i = 2, . . . , s − 1, are

linear. For i ≥ 1, the basis elements of Ni have degree i + 1.

Explicitly, for 1 ≤ i ≤ s− 1, Ni is the free module of rank i
(

s
i+1

)
with basis

{ (a1, . . . , aj , . . . , ai+1) | 1 ≤ a1 < · · · < ai+1 ≤ s and 1 ≤ j ≤ i },

and with maps

ci

(
(a1, . . . , aj , . . . , ai+1)

)
=

j−1∑
k=1

(−1)k+1yak
(a1, . . . , âk, . . . , aj , . . . , ai+1)

+
i+1∑

k=j+1

(−1)k+1yak
(a1, . . . , aj , . . . , âk, . . . , ai+1),

where the âk means omit ak.
It is straightforward to check that cici+1 = 0. Since none of the maps ci involve

constants from the field k, Criterion (1.2) implies that if (N∗, c∗) is exact, then it is a
minimal resolution of B.

One way to show it is exact is to construct vector space homomorphisms ti:Ni−→Ni+1

with ci+1ti + ti−1ci = 1. Such a map t∗ is called a contracting homotopy. The details are
left to the reader.

We choose to give an indirect proof that (N∗, c∗) is exact involving certain construc-
tions that will be useful when we construct the resolution of Bs

2 below.
To this end, let Li, for i = 0, . . . , s− 1, be the free A-module of rank (i+1)

(
s

i+1

)
with

basis { (a1, . . . , aj , . . . , ai+1) | 1 ≤ a1 < · · · < ai+1 ≤ s }. This time the bar can occur over
any entry. For i = 1, . . . , s− 1, define ei:Li−→Li−1 by the formula

ei

(
(a1, . . . , aj , . . . , ai+1)

)
=

j−1∑
k=1

(−1)k+1yak
(a1, . . . , âk, . . . , aj , . . . , ai+1)

+
i+1∑

k=j+1

(−1)k+1yak
(a1, . . . , aj , . . . , âk, . . . , ai+1),

Clearly, (N∗, c∗) is a subcomplex of (L∗, e∗). It is also isomorphic to the quotient complex
(M∗, d∗) of (L∗, e∗) given below. We will prove that this quotient complex is exact.

The complex (L∗, e∗) is easily seen to be a direct sum of s Koszul complexes as follows.
Let Ll

i be the A-span of the basis elements of the form (a1, . . . , ak, l, ak+2, . . . , ai+1). Since
ei preserves the value of the barred entry, (Ll

∗, e∗) is a subcomplex of (L∗, e∗). It is
easy to check that the restriction of e∗ to Ll

∗ corresponds to the Koszul differential in
the resolution of k[yl] over A where the element (−1)k(a1, . . . , ak, l, ak+2, . . . , ai+1) in Ll

i

corresponds to the basis element (a1, . . . , ak, ak+2, . . . , ai+1) in the Koszul resolution. (The
(−1)k is needed here to ensure that the signs in the differentials alternate as we move along
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the entries.) Since these Koszul complexes are exact, the complex (L∗, e∗) =
⊕

l(L
l
∗, e∗) is

exact.
For i = 0, . . . , s − 1, let Ki+1 be the submodule of Li spanned by the elements

(a1, . . . , ai+1) ≡
∑i+1

j=1(a1, . . . , aj , . . . , ai+1). Also, let K0 = A and let f1:K1−→K0 be
given by f1

(
(a1)

)
= ya1 . If we let fi+1 be the restriction of ei to Ki+1, then it is easy to

check that

fi+1

(
(a1, . . . , ai+1)

)
=

i+1∑
j=1

(−1)j+1yaj
(a1, . . ., âj , . . . , ai+1) .

That is, that (K∗, f∗) is the Koszul resolution of k over A.
Finally, we define a resolution (M∗, d∗) of B = A/I. For i = 1, . . . , s−1, let Mi be the

quotient module Li/Ki+1, let qi:Li−→Mi be the quotient map, and let di+1:Mi+1−→Mi be
induced by ei+1. Let M0 = A and let d1:M1−→M0 be given by d1 (q1 ((a1, a2))) = ya1ya2 .
(Note that d1 (q1 ((a1, a2))) = −ya1ya2 .)

The following commutative diagram illustrates what we have so far:

0−→ Ks
fs−→ Ks−1

fs−1−−→· · ·−→K3
f3−→K2

f2−→K1yis

yis−1

yi3

yi2 ‖

0−→ Ls−1
es−1−−→ Ls−2

es−2−−→· · ·−→ L2
e2−→ L1

e1−→ L0 = K1yqs−1

yqs−2

yq2

yq1

yf1

0−→Ms−1
ds−1−−→Ms−2

ds−2−−→· · ·−→M2
d2−→M1

d1−→M0=K0 =A

with (L∗, e∗) exact, (K∗, f∗) exact, and (L∗, e∗) satisfying Criterion (1.2). By construction,
the sequence M1

d1−→M0
d0−→B is the beginning of a minimal free resolution. The following

lemma implies that (M∗, d∗) is a minimal resolution of B.

Lemma 3.2. Assume that the following diagram commutes.

0−→Kh+1
fh+1−−→ Kh

fh−→ · · ·−→K3
f3−→K2

f2−→K1yih+1

yih+1

yi3

yi2 ‖

0−→ Lh
eh−→ Lh−1

eh−1−−→· · ·−→L2
e2−→ L1

e1−→ L0 = K1yq1

yf1

M1
d1−→M0=K0 =A

Also assume that (L∗, e∗) and (K∗, f∗) are free resolutions with (L∗, e∗) satisfying Criterion
(1.2), that Ki+1−→Li is the inclusion of a direct summand, that M1 is free, and that
K2−→L1−→M1 is short exact. For 2 ≤ i ≤ h, let Mi = Li/Ki+1 and let di:Mi−→Mi−1

be induced by ei. Then (M∗, d∗) is a minimal free resolution.

Proof. Mi is free since Ki+1 is a direct summand of Li. The sequence (M∗, d∗) is exact by
a diagram chase and minimal by Criterion (1.2).
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It now follows that (N∗, c∗) is the minimal resolution of B since it maps isomorphically
to (M∗, d∗) under the map q∗.

We remark that a minimal resolution for Bs
1 can also be determined as follows.

Consider the regular element a = y1 + y2 + · · · + ys in Bs
1. It is easy to see that

Bs
1/(a) is isomorphic to k[y1, . . . , ys−1]/(y1, . . . , ys−1)2. A minimal free resolution of this

ring as a k[y1, . . . , ys−1]-module was discussed by Wahl ([W], p.240) and may be de-
scribed as the Eagon–Northcott complex associated to the 2 × 2 minors of the matrix(

y1 y2 . . . ys−1 0
0 y1 . . . ys−2 ys−1

)
(see [EN] or [ERS]).

Section 4. The minimal resolution of Bs
2

Let A = k[y1, . . . , ys], and let I2 be the ideal generated by {yiyj | i 6≡ j−1, j, j+1 mod
s}. In this section, we determine the minimal resolution of Bs

2 = A/I2. The construction
will be similar to the quotient construction given in Section 3. For the remainder of this
section, we fix s ≥ 4 and write B = Bs

2. We will say the indices i and j are adjacent if i is
congruent to either j − 1 or j + 1 modulo s. We take A and B graded via deg(yi) = 1.

Before giving the quotient construction, we describe the beginning of the resolution
directly. Let N0 = A and let c0:A−→B = A/I be the quotient map. Let N1 be the
free module with basis {(a1, a2) | 1 ≤ a1 < a2 ≤ s, a1 and a2 not adjacent}, and let
c1

(
(a1, a2)

)
= ya1ya2 . Then N1

c1−→N0
c0−→B−→0 is exact.

The kernel of c1 is spanned (not minimally) by elements of the form κ1 = ya3(a1, a2)−
ya2(a1, a3), κ2 = ya3(a1, a2) − ya1(a2, a3), and κ3 = ya2(a1, a3) − ya1(a2, a3), where a1 <
a2 < a3. However, if some of these a’s are adjacent, then some of the κ’s don’t make
sense. There are three cases: if none of the a’s are adjacent, then any two of the κ’s will
be linearly independent; if exactly two of the a’s are adjacent, then only one of the κ’s
makes sense; and if the three a’s are adjacent, then none of the κ’s makes sense. So a basis
for N2 will consist of ordered triples (a1, a2, a3), say with bars as in the previous section,
where the number of basis elements associated to (a1, a2, a3) depends on the adjacencies
between a1, a2, and a3.

This direct description becomes quite complicated as we try to construct the Ni for
i > 2. For this reason, we use the quotient construction below. Essentially, the idea is to
allow more basis elements than we need (the Ji’s), and then quotient out the extra ones
(the Ki’s). The construction will imply the following.

Example 4.1. The minimal resolution of B has the form

0−→Ms−2
ds−2−−→Ms−3

ds−3−−→ · · · −→M2
d2−→M1

d1−→M0
d0−→B−→0,

where rank(M0) = rank(Ms−2) = 1, and, for 1 ≤ i ≤ s − 3, rank(Mi) = s
(
s−2

i

)
−(

s
i+1

)
= i(s−i−2)

s−1

(
s

i+1

)
. The basis element of M0 is in degree 0; the basis elements of Mi,

1 ≤ i ≤ s − 3, have degree i + 1; and the basis element of Ms−2 has degree s. The maps
d1 and ds−2 are quadratic, and the maps di, i = 2, . . . , s− 3, are linear.

To construct the resolution, we apply Lemma (3.2) to the following diagram, where
d0:M0 = A−→B is the canonical projection and M1

d1−→M0
d0−→B is the beginning of a

9



minimal free resolution.

0−→ Ks
fs−→ Ks−1

fs−1−−→· · ·−→K3
f3−→K2

f2−→K1yis

yis−1

yi3

yi2 ‖

0−→Js−1
es−1−−→ Js−2

es−2−−→· · ·−→ J2
e2−→ J1

e1−→ J0 = K1yq1

yf1

M1
d1−→M0=K0 =A

We first define the modules Ji. Most of the basis elements of Ji are of the form
(a1, . . . , ai+1), 1 ≤ a1 < · · · < ai+1 ≤ s, with bars over some of the entries. The bars must
satisfy the conditions: (i) if ak and al are adjacent, then either they both have bars or
neither of them has, and (ii) there is exactly one adjacent group of indices having bars.
In addition, Js−2 has one extra basis element which we call X. The elements of Ji have
degree i + 1, except for X which has degree s. It is fairly easy to show that

rank(Ji) =

 s
(
s−2

i

)
, for i = 0, . . . , s− 3;

s + 1, for i = s− 2; and
1, for i = s− 1.

To be more explicit, the basis elements of Ji (other than X) have one of the following
forms:
(i) (a1, . . . , ai−j , s− j, . . . , s), with 1 < a1 < · · · < ai−j < s− j − 1,
(ii) (a1, . . . , am, n, n + 1, . . . , n + j, am+j+2, . . . , ai+1), with 1 ≤ a1 < · · · < am < n − 1

and n + j + 1 < am+j+2 < · · · < ai+1 ≤ s,
(iii) (1, . . . , j + 1, aj+2, . . . , ai+1), with j + 2 < aj+2 < · · · < ai+1 ≤ s, or
(iv) (1, . . . , n, an+1, . . . , ai−j+n, s− j + n, . . . , s), with n + 1 < an+1 < · · · < ai−j+n <

s− j + n− 1.
In each of these, 0 ≤ j ≤ i and there are j+1 barred adjacent indices. In (ii), 0 ≤ m ≤ i−j,
n > 1, and n + j < s; and in (iv), 1 ≤ n ≤ j.

Given a basis element (a1, . . . , ai+1) with bars on a set of adjacent indices and given
an element σ in the symmetric group on i + 1 letters, we let (aσ(1), . . . , aσ(i+1)) with bars
over the same indices, represent the element (−1)σ(a1, . . . , ai+1). For example, (3, 1, 5, s)
represents (−1)(1, 3, 5, s).

Given a basis element (a1, . . . , ai+1) with bars on a set of adjacent indices, we let
τ
(
(a1, . . . , ai+1)

)
= (a1 + 1, . . . , ai+1 + 1) with bars over the corresponding indices (where

s + 1 is replaced by 1 when necessary). For example, τ(1, 3, 5, s) = (2, 4, 6, 1), which
equals (−1)(1, 2, 4, 6) by the above. We can extend τ to a k-linear mapping on Ji via the
formulas τ(yj) = yj+1 (with ys+1 ≡ y1), and τ(pZ) = τ(p)τ(Z), where p ∈ A and Z is a
basis element of Ji. (When i = s− 2, we let τ(X) = X.)

With these definitions, it is easy to see that any basis element of Ji (other than X)
can be written in the form

±τk(a1, . . . , ai−j , s− j, . . . , s)

10



for some k with 0 ≤ k ≤ s− 1. This observation will be useful below when we describe the
differential e∗ and the contracting homotopy t∗.

It is sometimes convenient to regard the basis elements of Ji (other than X) as certain
sums of the basis elements of Li (see Section 3). For example,

(a1, . . . , ai−j , s− j, . . . , s) =
s∑

r=s−j

(a1, . . . , ai−j , s− j, . . . , r − 1, r, r + 1, . . . , s).

With this interpretation, the value of e∗ on the basis elements of J∗ (other than X) is just
the restriction of the e∗ defined on L∗. To be explicit,

ei

(
(a1, . . . , ai−j ,s− j, . . . , s)

)
=

i−j∑
k=1

(−1)k+1yak
(a1, . . . , âk, . . . , ai−1, s− j, . . . , s)

+
s−1∑

k=s−j

(−1)i−s+kyk(a1, . . . , ai−j , s− j, . . . , k̂, k + 1, . . . , s)

+
s∑

k=s−j+1

(−1)i−s+kyk(a1, . . . , ai−j , s− j, . . . , k − 1, k̂, . . . , s),

ei

(
τk(a1, . . . , ai−j ,s− j, . . . , s)

)
= τkei

(
(a1, . . . , ai−j , s− j, . . . , s)

)
,

and

es−2(X) = y1y2(3, . . . , s) +
s−1∑
k=3

(−1)ky1yk(2, . . . , k̂, . . . , s)

+
s−2∑
l=2

s∑
k=l+2

(−1)k+lylyk(1, . . . , l̂, l + 1, . . . , k − 1, k̂, . . . , s).

The appearence of X is something of a mystery (hence its name). Note that es−2(X)
is a quadratic combination of basis elements, while all other basis elements map to linear
combinations.

To complete the picture, let (K∗, f∗) be the same as the (K∗, f∗) defined in Section 3.
That is, Ki+1 is spanned by the elements

(a1, . . . , ai+1) ≡
i+1∑
k=1

(a1, . . . , ak, . . . , ai+1).

To apply Lemma (3.2), we need to show that (J∗, e∗) is exact. We do this by finding a
contracting homotopy; that is, a collection of vector space maps ti: Ji−→Ji+1 with ti+1ei +
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ei−1ti = 1. If E = (ε1, . . . , εs) is a sequence of nonnegative integers, let yE = yε1
1 · · · yεs

s .
Then the set {yEZ} where Z is a basis element in Ji forms a k-basis for Ji. We must define
ti(yEZ). The idea is similar to what one does to construct a contracting homotopy for the
Koszul resolution of k. For example, when Z has the form (a1, . . . , ai+1) with appropriate
bars, the homotopy (usually) sends yE(a1, . . . , ai+1) to some linear combination of terms
of the form (yE/yj)(j, a1, . . . , ai+1) where yj is a variable occuring in yE .

Below we give explicit formulas for ti(yEZ), for −1 ≤ i ≤ s− 2. In many cases, ti is
given only on elements of the form yE(a1, . . . , ai−j , s− j, . . . , s). In these cases, the general
formula is gotten using the action of τ via the formula

(4.2)
ti

(
yE · τk

(
(a1, . . . , ai−j ,s− j, . . . , s)

))
=

τk
(
ti
(
τ s−k(yE) · (a1, . . . , ai−j , s− j, . . . , s)

))
.

In all of the following formulas, the exponents εj on the variables yj stand for non-
negative integers. Therefore an exponent of εj + 1 on yj means that yj actually occurs.

Let e0: J0−→J0/Im(e1) be the projection. To describe t−1: J0/Im(e1)−→J0, we write
its composition with e0.

For 2 ≤ k ≤ s− 2:

t−1 ◦ e0

(
y

εs−1
s−1 yεs

s (s)
)

= y
εs−1
s−1 yεs

s (s).

t−1 ◦ e0

(
yε1+1
1 yεs

s (s)
)

= yε1
1 yεs+1

s (1).

t−1 ◦ e0

(
yε1+1
1 y

εs−1+1
s−1 yεs

s (s)
)

= 0.

t−1 ◦ e0

(
yε1
1 yεk+1

k · · · yεs
s (s)

)
= 0.

The general definition of t−1 follows from Equation (4.2).

For 0 ≤ i ≤ s− 4 there are a number of formulas.

ti
(
y

εs−i

s−i · · · y
εs
s (s− i, . . . , s)

)
= 0.

ti

(
y

εs−i−1+1
s−i−1 · · · yεs

s (s− i, . . . , s)
)

= 0.

ti
(
yε1+1
1 y

εs−i

s−i · · · y
εs
s (s− i, . . . , s)

)
= yε1

1 y
εs−i

s−i · · · y
εs
s (1, s− i, . . . , s).

ti

(
yε1+1
1 y

εs−i−1+1
s−i−1 · · · yεs

s (s− i, . . . , s)
)

= yε1
1 y

εs−i−1+1
s−i−1 · · · yεs

s (1, s− i, . . . , s)

+
s∑

r=s−i

(−1)s−i+r+1yε1
1 y

εs−i−1
s−i−1 · · · y

εr+1
r · · · yεs

s (1, s− i− 1, . . . , r − 1, r̂, r + 1, . . . , s).

Continuing with 0 ≤ i ≤ s− 4 and taking 2 ≤ k ≤ s− i− 2,

ti
(
yεk+1

k · · · yεs
s (s− i, . . . , s)

)
= yεk

k . . . yεs
s (k, s− i, . . . , s).

ti
(
yε1+1
1 yεk+1

k · · · yεs
s (s− i, . . . , s)

)
= yε1+1

1 yεk

k · · · yεs
s (k, s− i, . . . , s)

+
s∑

r=s−i+1

(−1)s−i+ryε1
1 yεk

k · · · yεr+1
r · · · yεs

s (1, k, s− i, . . . , r − 1, r̂, r + 1, . . . , s).
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Still continuing with 0 ≤ i ≤ s− 4, taking 0 ≤ j < i and 2 ≤ k < a1,

ti
(
yε1
1 y

εs−j−1
s−j−1 · · · y

εs
s (a1, . . . , ai−j , s− j, . . . , s)

)
= 0.

ti
(
yεk+1

k · · · yεs
s (a1, . . . , ai−j , s− j, . . . , s)

)
= yεk

k · · · yεs
s (k, a1, . . . , ai−j , s− j, . . . , s).

ti
(
yε1+1
1 yεk+1

k · · · yεs
s (a1, . . . , ai−j , s− j, . . . , s)

)
=

yε1+1
1 yεk

k · · · yεs
s (k, a1, . . . , ai−j , s− j, . . . , s) +

s∑
r=s−j+1

(−1)s−i+ryε1
1 yεk

k · · · yεr+1
r · · · yεs

s

(1, k, a1, . . . , ai−j , s− j, . . . , r − 1, r̂, r + 1 . . . , s).

And continuing with 0 ≤ i ≤ s− 4 and 0 ≤ j < i, and taking a1 ≤ k ≤ s− j − 2,

ti
(
yεk+1

k · · · yεs
s (a1, . . . , ai−j , s− j, . . . , s)

)
= 0.

ti
(
yε1+1
1 yεk+1

k · · · yεs
s (a1, . . . , ai−j , s− j, . . . , s)

)
= 0.

The general definition of ti for 0 ≤ i ≤ s− 4 follows from Equation (4.2).

Now we give the formulas for ts−3. At this point, some of the formulas do not commute
with the action of τ .

ts−3

(
yε2
2 · · · yεs

s (3, . . . , s)
)

= 0.

ts−3

(
yε1+1
1 yε3

3 · · · yεs
s (3, . . . , s)

)
= yε1

1 yε3
3 · · · yεs

s (1, 3, . . . , s).

The above two formulas extend by Equation (4.2).
For 1 ≤ k ≤ s− 1,

ts−3

(
yε1
1 · · · yεk+1

k y
εk+1+1
k+1 · · · yεs

s (1, . . . , k − 1, k + 2, . . . , s)
)

=

X +
k∑

r=2

(−1)ryε1
1 · · · yεr+1

r · · · yεs
s (1, . . ., r̂, . . . , s).

ts−3

(
yε1+1
1 · · · yεs+1

s (2, . . . , s− 1)
)

=

(−1)s−1

(
X +

s∑
r=2

(−1)ryε1
1 · · · yεr+1

r · · · yεs
s (1, . . ., r̂, . . . , s)

)
.

For 1 ≤ j ≤ s− 3,

ts−3

(
yε1
1 · · · yεs

s (2, . . . , j + 1, j + 3, . . . , s)
)

= 0.

The above formula extends using Equation (4.2).
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Here are the formulas for ts−2.

ts−2

(
yε2
2 · · · yεs

s (2, . . . , s)
)

= 0.

This formula extends using Equation (4.2).
For 2 ≤ k ≤ s− 1,

ts−2

(
yε1+1
1 · · · yεs

s (2, . . . , s)
)

= yε1
1 · · · yεs

s (1, . . . , s).

ts−2

(
yε1
1 · · · yεk+1

k · · · yεs
s (1, . . ., k̂, . . . , s)

)
= 0.

Finally,
ts−2

(
yε1
1 · · · yεs

s X
)

= 0.

The verification that t∗ is a contracting homotopy is tedious, but straight forward and
left to the (masochistic) reader.

We remark that a minimal resolution for Bs
2 can also be determined as follows. Con-

sider the regular sequence a = y1 + y3 + y5 + · · ·, b = y2 + y4 + · · · in Bs
2. One can

show that Bs
2/(a, b) is isomorphic to k[z1, . . . , zs−2]/(zij , z2

k − z2
1 | i < j, k > 1), where

the zi’s are certain linear combinations of the yi’s. A minimal resolution of this ring as
a k[z1, . . . , zs−2]-module was discussed by Wahl ([W], p.241) and determined by Behnke
([B]). In our application to rings of invariants in the next section, we assign certain internal
degrees to the variables y1, . . . , ys. It will be evident that the regular sequence (a, b) is
not homogeneous in this internal degree. Since our main result concerns the internal Betti
numbers, our resolution of Bs

2 is more useful than Behnke’s.

Section 5. The minimal resolution of Bn.
In this section we describe the minimal resolutions for a particular family of rings of

invariants and show that each of these resolutions exhibits internal duality. Fix an integer
n ≥ 1, let N = 1+n+n2, and let k be a field containing a primitive N -th root of unity ω.
Let G ⊆ SL3(k) be the cyclic group generated by the matrix diag(ω, ωn, ωn2

). Let B = Bn

denote the ring of invariants k[x1, x2, x3]G.
The section is organized as follows. First we construct a minimal set of homogeneous

algebra generators and a minimal set of homogeneous algebra relations for B. Then we
quotient out a (homogeneous) regular element and show that the resulting ring B′ is of the
form k[y1, . . . , y3n+6]/J ′ where J ′ is minimally generated by polynomials whose leading
terms are {yiyj | i 6≡ j − 1, j, j + 1 mod 3n + 6}. We then show that a minimal resolution
of B′ has the same structure as the minimal resolution of B3n+6

2 constructed in Section 4.
Finally, we prove the main theorem (5.5) using this explicit resolution.

Since G acts diagonally on k[x1, x2, x3], the ring of invariants is spanned by monomials.
The invariant monomials are

{xε1
1 xε2

2 xε3
3 | ε1 + nε2 + n2ε3 ≡ 0 mod N }.

To such a monomial, we associate the exponent sequence (ε1, ε2, ε3), and we call the integer
(ε1 + nε2 + n2ε3)/N its multiplicity. Note that the sequence (ε1, ε2, ε3) is invariant if and
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only if its cycled sequences (ε2, ε3, ε1) and (ε3, ε1, ε2) are (this follows from the fact that
n3 ≡ 1 mod N). Also note that the sequence (ε1, ε2, ε3) corresponds to an algebra generator
if and only if its cycled sequences correspond to algebra generators.

It is clear that any monomial with multiplicity 1 is a generator of B. For example,
the exponent sequence (1, 1, 1) corresponds to a degree three generator α = x1x2x3. Since
any invariant monomial with ε1, ε2, and ε3 all non-zero is divisible by α, any other algebra
generators must have some zero ε’s.

Suppose that (ε1, ε2, 0) corresponds to a generator. If it has multiplicity 1, then
ε1 + nε2 = N , so ε1 ≡ 1 mod n. It follows that (ε1, ε2, 0) = (1 + nk, n + 1 − k, 0) for
some k = 0, . . . , n + 1; we call the corresponding generators µk. The cycled sequences
(n + 1− k, 0, 1 + nk) and (0, 1 + nk, n + 1− k) correspond to generators which we call νk

and ωk respectively. Note that the degree of µk, νk, and ωk is 3 + (n− 1)(k + 1).

Proposition 5.1. The elements α, µk, νk, and ωk, for k = 0, . . . , n + 1 form a minimal
generating set for B.

Proof. From their construction it is clear that none of these elements divide each other. So,
if they generate, then they are minimal. We must show that every invariant is a product
of them.

Suppose E = (ε1, ε2, ε3) 6= (0, 0, 0) corresponds to the invariant monomial, xE . If all
of its entries are non-zero, then it is divisible by α and we are done. If at least one of its
entries is zero, then it can be cycled until the third entry is zero. So assume (ε1, ε2, 0) is
an invariant. If it has multiplicity 1 then it is one of the µk, so assume it has multiplicity
greater than 1. There are three cases.
(1) If ε1 = 0, then ε2 6= 0 and nε2 ≡ 0 mod N . Consequently, N ≤ ε2, so ωn+1, which

corresponds to (0, N, 0), divides xE .
(2) If 1 ≤ ε1 < N , then since ε1 +nε2 ≥ 2N , we have ε2 > n+1. It follows that µ0, which

corresponds to (1, n + 1, 0), divides xE .
(3) If ε1 ≥ N , then µn+1, which corresponds to (N, 0, 0), divides xE .
Note that the degrees of the generators are all less that or equal to N , the order of G.

We now determine a minimal set of relations for B. Let A = k[a, uk, vk, wk] be the
graded polynomial ring on indeterminants a, uk, vk, and wk, for k = 0, . . . , n + 1, where
a has degree 3, and uk, vk, and wk have degree 3 + (n− 1)(k + 1). Let e0:A−→B be the
map sending a to α, uk to µk, vk to νk, and wk to ωk. Then B = A/J for an appropriate
homogeneous ideal J . We describe a minimal generating set for J .

Given a sequence E = (ε0, . . . , ε3n+6) of nonnegative integers, let mE stand for the
monomial aε0uε1

0 vε2
0 wε3

0 · · ·wε3n+6
n+1 . If F = (φ0, . . . , φ3n+6) is another such sequence, we will

say that mE < mF if deg(mE) < deg(mF ) or if deg(mE) = deg(mF ) and εj < φj for the
smallest j where E and F differ. (This is sometimes called the graded lexicographical order
on A.) The degree of mE is clearly the degree of e0(mE), a monomial in the x’s. The
polynomial degree of mE is defined as

∑3n+6
i=0 εj . The leading term of a polynomial p in A

will be the largest monomial occurring in A.
Since the generators α, µk, νk, and ωk of B are monomials in the x’s, there is a basis

for J consisting of differences mE −mF of monomials in A. The following elements of J
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are of the form mE −mF , where mE > mF and mE has polynomial degree 2.
uiuj − ui−1uj+1, for 1 ≤ i ≤ j ≤ n;
u0v0 − au1;
u0vi − an+2−iwi−1

0 , for 1 ≤ i ≤ n + 1;
uivi − an+1−ivi−1

0 vi−1, for 1 ≤ i ≤ n + 1;
uivj − an+1−ivi−1

0 vj−1, for 1 ≤ i < j ≤ n + 1;
u0wi − awi+1, for 1 ≤ i ≤ n;
u1wj − an+1−juj

0, for 2 ≤ j ≤ n + 1; and
uiwj − an+1−iuj−1

0 ui−1, for 2 ≤ i < j ≤ n + 1.
Each of these elements can be cycled (a 7→ a, uk 7→ vk, vk 7→ wk, and wk 7→ uk) twice to
give two more elements in J of the same form. The total number of elements (including
cycles) is (3n + 6)(3n + 3)/2. We say that a monomial is A-admissible if it occurs as a
leading term in the above list (cycles included).

Proposition 5.2. The above polynomials (cycles included) minimally generate the ideal
J .

Proof. The above list of polynomials minimally generates some ideal, call it K. Assume
K 6= J and let p ∈ J −K be a (monic) polynomial having the smallest leading term, l. If
any A-admissible mE divides l, then the polynomial p−(l/mE)(mE−mF ), with mE−mF

in the above list, is in J −K, has smaller leading term than p, and therefore contradicts
the choice of p.

It follows that the leading term l of p must be one of (or a cycle of one of) the following:
(1) aε1uε2

0 uε3
k , (2) aε1uε3

k uε4
n+1, or (3) aε1uε2

0 wε5
n+1, where 1 ≤ k ≤ n + 1, ε1, ε2, ε4, ε5 are

nonnegative integers, and ε3 equals 0 or 1.
Consider the map e0:A−→B. Since p is in J , e0(p) = 0. Now e0(l) is some monomial

in the x’s, so for e0(p) = 0, there must be other monomials in p (necessarily smaller than
l in the ordering) which map to e0(l). However, it is easy to check that the possible l’s
above are the minimal monomials in A mapping to their respective x1, x2, x3 monomials.

We should remark that the above basis for J is a Gröbner basis; that is, the A-
admissible monomials minimally generate the ideal of leading terms of J .

Now let A′ = A/(a) = k[uk, vk, wk] and let B′ = B/(a). Then B′ = A′/J ′, where J ′

is minimally generated by the above list of generators for J with all of the a’s replaced
by zero. The following well known lemma implies that the minimal resolution of B as an
A-module has the same structure as the minimal resolution of B′ as an A′-module.

Lemma 5.3. Let A = k[y1, . . . , ys], let B = A/J with J homogeneous, and let a be an
element of A which is not a zero divisor for A or for B. Let (M∗, e∗) be a minimal resolution
of B as an A-module. Then the complex (M∗/(a), e∗/(a)) is a minimal resolution of B/(a)
as an A/(a)-module. In particular, the internal Betti numbers of these resolutions are the
same.

Proof. The sequence 0−→A
·a−→A−→A/(a)−→0 is exact since a is A-regular. Tensoring

this sequence with B yields an exact sequence B
·a−→B−→B/(a)−→0. However, since
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a is B-regular, this sequence is in fact short exact (·a is injective). It follows that
TorA

m(B,A/(a)) = 0 for all m > 0. By a change of rings theorem ([CE], p.117) TorA
m(B,k)

is isomorphic to TorA/(a)
m (B/(a),k) for all m.

To describe the minimal A′-resolution of B′, it is convenient to use the following
ordering on the monomials of A′. Given E = (ε1, . . . , ε3n+6) and F = (φ1, . . . , φ3n+6), we
say mE < mF if deg(mE) < deg(mF ) or if deg(mE) = deg(mF ) and εj < φj for the largest
j where E and F differ. (This is sometimes called the graded reverse lexicographical order
on A′.) With this ordering, the generators of J ′ are the following (and their cycles):

ui−1uj+1 − uiuj , for 1 ≤ i ≤ j ≤ n;
u0v0;
u0vi, for 1 ≤ i ≤ n + 1;
uivi, for 1 ≤ i ≤ n; un+1vn+1 − vn

0 vn;
uivj , for 1 ≤ i < j ≤ n + 1;
u0wi, for 1 ≤ i ≤ n;
u1wj , for 2 ≤ j ≤ n; u1wn+1 − un+1

0 ; and
uiwj , for 2 ≤ i < j ≤ n + 1.

Let us say that a monomial is A′-admissible if it appears as a leading term in the above
generating set for J ′. Let I ′ be the ideal generated by the A′-admissible monomials and
let B′′ = A′/I ′.

If we rename the variables u0, u1, . . . , un+1, v0, . . . , vn+1, w0, . . . , wn+1 by y1,
. . ., y3n+6, then it is easy to see that the product yiyj is A′-admissible if and only if
i 6≡ j − 1, j, j + 1 mod 3n + 6. That is, B′′ is isomorphic to the ring B3n+6

2 of Section 4,
where the yi’s are given appropriate internal degrees. The following Proposition will be
proved in the next section.

Proposition 5.4. The minimal resolutions of B′ and B′′ as A′-modules have the same
internal Betti numbers.

The proof of this proposition relies on the fact that the resolution of B′′ is pure (each
differential has a homogeneous polynomial degree), so can be lifted to a minimal resolution
of B′.

To end this section, we show that the resolution of B′′ (hence the resolution for B)
exhibits internal duality. Recall that this means that for each free module Mi in the
minimal resolution, there exists an hi such that βi,j = βi,hi−j for all j.

Theorem 5.5. The minimal resolution of B′′,

0−→M3n+4
d3n+4−−−→M3n+3−→ · · · −→M1

d1−→M0−→B′′−→0

exhibits internal dualty with h0 = 0; hi = (i + 1)(n2 + 2n + 3), for 1 ≤ i ≤ 3n + 3; and
h3n+4 = (3n + 6)(n2 + 2n + 3).

Proof. The result clearly holds for M0 = A′. For 1 ≤ i ≤ 3n+3, the basis elements for Mi

are quotients of elements of the form (a1, . . . , ai+1), 1 ≤ a1 < · · · < ai+1 ≤ 3n+6, with bars
over some adjacent entries (see Section 4). The pairing yj ↔ y3n+7−j on the variables of A′

associates variables of complementary degrees: deg(yj)+deg(y3n+7−j) = n2 +2n+3. This
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pairing extends to the Mi basis elements via (a1, . . . , ai+1) ↔ (3n+7−ai+1, . . . , 3n+7−a1)
where the bars are over corresponding indices. For example, when n = 2, then 3n+7 = 13
and (1, 3, 11, 12) pairs with (1, 2, 9, 12). Since deg(a1, . . . , ai+1)+deg(3n+7−ai+1, . . . , 3n+
7− a1) = (i + 1)(n2 + 2n + 3), these Mi exhibit internal duality. The basis element X of
M3n+4 has degree

∑3n+6
j=1 deg(yj) which equals (3n+6)(n2 +2n+3)/2. So M3n+4 exhibits

internal duality with h3n+4 = (3n + 6)(n2 + 2n + 3).

Remark 5.6. The example which motivated this work corresponds to the n = 2 case of the
above theorem (see Section 7).

Remark 5.7. Computer calculations support the possibility that all rings of the form
k[x1, x2, x3]G, with G ⊆ SL3(k) cyclic, have resolutions with the same structure as Bs

2 for
some s. Only three families of these seem to exhibit internal duality: the ring in Example
(2.2), the family of Theorem (5.5), and the following family. For n ≥ 1, let k be a field
containing a primitive (4n)-th root of unity ω, and let G ⊆ SL3(k) be the cyclic group
generated by diag(ω, ω2n−1, ω2n). Then, for each n, Bn = k[x1, x2, x3]G has 9 generators
and 20 relations. The minimal resolutions of the Bn’s each exhibit internal duality – the
proof is similar to the above.

Section 6. Relation between resolutions of A/J and resolutions of A/I
In this section, A = k[y1, . . . , ys] with deg(yj) = 1. We fix a well ordering on Mono(A),

the set of (monic) monomials in A = k[y1, . . . , ys], which is multiplicative (for α1, α2, α3 ∈
Mono(A), α1 > α2 implies α1α3 > α2α3). The largest monomial of a given polynomial
will be called the leading term. Let J be an ideal minimally generated by {z01, . . . , z0β1},
and let I be the ideal generated by the leading terms y0,j of the z0,j . We assume that the
set {z0j} is a Gröbner basis for J which means that the ideal I is minimally generated
by the y0j and contains the leading terms of all the elements of J . Our goal is to give
conditions under which the minimal resolutions of A/J and A/I have the same structure.

Let M be a free A-module with basis {xj | j = 1, . . . , β}. We call the k-basis
{αxj | α ∈ Mono(A)} of M the set of (monic) monomials of M . For later induction
proofs, we will need a Mono(A)-grading (called type) on the non-zero elements of M and
an ordering on the monomials of M which is compatible with the above fixed order on
Mono(A).

For a monic polynomial p in A, type(p) is the leading term of p, and for general p 6= 0,
type(p) is type(kp) where k ∈ k∗ and kp is monic. For each j = 1, . . . , β, choose an element
type(xj) ∈ Mono(A), and for x =

∑
pjxj , let type(x) = maxj{type(pj) type(xj)}. For an

ordering on the monomials of M we say αxj > α′xj′ , for α, α′ ∈ Mono(A), if one of the
following holds:
(i) type(αxj) > type(α′xj′), or
(ii) type(αxj) = type(α′xj′) and type(xj) > type(xj′), or
(iii) type(αxj) = type(α′xj′), type(xj) = type(xj′), and j > j′.

The maximal monomial of an element x =
∑

pjxj in M will be called the leading
term of x, denoted l.t.(x). The sum of all the monomials of x having type α will be called
the α type-term, denoted xα. The type-term of x having the same type as the leading term
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will be called the leading type-term, denoted l.t.t.(x). We write Mα for the k-span of the
monomials in M of type less than or equal to α and M (α) for the k-span of monomials of
type exactly α.

Let 0−→Mh
eh−→ · · · e2−→M1

e1−→M0 = A be a sequence of free A-modules and A-linear
maps, and for each i, let {xij | j = 1, . . . , βi} be an A-basis for Mi. We say (M∗, e∗)
has a type grading if each Mi has a Mono(A)-grading as above. By convention, we always
take x01 = 1 and type(x01) = 1. A type graded sequence (M∗, e∗) is said to be filtered by
type if ei(Mα

i ) ⊆ Mα
i−1 and to preserve type if ei(M

(α)
i ) ⊆ M

(α)
i−1. We define the associated

sequence of a type graded sequence (M∗, e∗) to be 0−→Mh
dh−→ · · · d2−→M1

d1−→M0 = A, where
di is the A-linear map which sends xij to the type(xij)–term of ei(xij). Clearly, the
associated sequence (M∗, d∗) preserves type.

Lemma 6.1. Let (M∗, e∗) be filtered by type, and let (M∗, d∗) be its associated sequence.
If x ∈ Mi has type α, then di(xα) = (ei(xα))α = (ei(x))α. In particular, if ei(x) = 0 then
di(xα) = 0.

Proof. Let x =
∑

j∈S pjxij , let T = {j ∈ S | type(pj) type(xij) = α}, and let U = {j ∈ S |
type(pj) type(ei(xij)) = α}. Then xα =

∑
j∈T l.t.(pj)xij , and

(i) di(xα) =
∑

j∈T l.t.(pj)di(xij) =
∑

j∈U l.t.(pj)l.t.t.(ei(xij)),

(ii) (ei(xα))α =
(∑

j∈T l.t.(pj)ei(xij)
)

α
=
∑

j∈U l.t.(pj)l.t.t.(ei(xij)), and

(iii) (ei(x))α =
(∑

j∈S pjei(xij)
)

α
=
∑

j∈U l.t.(pj)l.t.t.(ei(xij)).

Suppose that (M∗, e∗) is a sequence of A-modules and A-linear maps as above satis-
fying the additional property that ei(xij) 6= 0 for each i, j. Then we can define an induced
type grading on M∗ so that (M∗, e∗) is filtered by type. For this, first recall by conven-
tion that x01 = 1 has type 1, so non-zero elements of M0 = A have the usual types (a
scalar multiple of the leading term). Once the type has been defined on Mi−1, we let
type(xij) = type(ei(xij)) and then extend to the rest of Mi in the obvious way.

We now return to the ideals J and I with generators {z0j} and {y0j} respectively.
Our first result constructs a resolution of A/I from one of A/J .

Proposition 6.2. Let (M∗, e∗) be a free resolution of A/J with e0:M0 = A−→B the
projection, and give (M∗, e∗) the induced type grading defined above. If each subcomplex
(Mα

∗ , e∗) is exact, then the associated complex (M∗, d∗) is a resolution of A/I. In addition,
if (M∗, e∗) is a minimal resolution of A/J , then (M∗, d∗) is a minimal resolution of A/I.

Proof. Since the image of e1 is J and {z0j} is a Gröbner basis, the image of d1 is I. Hence
M1

d1−→M0
d0−→A/I is exact.

For i ≥ 1, didi+1 = 0, since didi+1(xi+1,j) is the type(xi+1,j)–term of eiei+1(xi+1,j),
which is zero. Assume di(x) = 0 for some x 6= 0 in Mi. We may assume x is type-
homogeneous, say with type α. di(x) = 0 implies that β = type(ei(x)) is less than α. Since
ei(x) is in the kernel of ei−1, and (Mβ

∗ , e∗) is exact, there is a y ∈ Mi with type(y) ≤ β
and ei(y) = ei(x). Now, ei(x− y) = 0, so there is a z ∈ Mα

i+1 with ei+1(z) = x− y. From
Lemma (6.1), we have di+1(zα) = (ei+1(z))α = x. We have shown that (M∗, d∗) is exact.
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By the Minimality Criterion (1.2), (M∗, e∗) minimal implies that the matrices of the
ei relative to the bases {xij} and {xi−1,j} involve no non-zero constants. But the matrices
of the di come from the matrices of the ei (by choosing only some of the non-zero entries),
so they have no non-zero constants either.

Our next result will construct a resolution of A/J from one of A/I. Since I is a
monomial ideal, we can choose a minimal resolution (M∗, d∗) of A/I which preserves types
(construct the di inductively writing the elements of ker(di−1) as sums of homogeneous
type-terms).

Proposition 6.3. Let (M∗, d∗) be a free resolution of A/I preserving types with M1 =
⊕β1

j=1Ax1j , M0 = A, and d1(x1j) = y0j . Then there is a resolution (M∗, e∗) of A/J ,
beginning with e1(x1j) = z0j , which satisfies the following properties.
(i) (M∗, e∗) is filtered by type,
(ii) (M∗, d∗) is the associated resolution to (M∗, e∗), and
(iii) For each α ∈ Mono(A), the subcomplex (Mα

∗ , e∗) is exact.

Proof. We will construct the ei’s inductively. We first check that M1
e1−→M0

e0−→A/J satisfies
properties (i) to (iii).

type
(
e1(
∑

pjx1j)
)

= type
(∑

pjz0j

)
≤ maxj{type(pjz0j)}
= maxj{type(pjy0j)}
= maxj{type(pjx1j)}

= type
(∑

pjx1j

)
So (i) is satisfied. Property (ii) is trivial.

For (iii), let α ∈ Mono(A) and assume that we have shown that Mβ
1

e1−→Mβ
0

e0−→A/J

is exact at Mβ
0 for each β < α. Suppose that p ∈ Mα

0 has type α and e0(p) = 0. Then
p ∈ J and the leading term of p is kα for some k in k. Since {z0j} is a Gröbner basis,
there exist qj ∈ A with kα =

∑
qjy0j . But kα and the y0j are monomials, so kα = qy0j0

for some q ∈ Mono(A). Let x = qx1j0 in M1. Then e1(x) = qz0j0 has leading term kα.
Now e0(p − e1(x)) = 0 with type(p − e1(x)) < α, so there exists y ∈ Mβ

1 , β < α, with
e1(y) = p− e1(x). So e1(x + y) = p with type(x + y) = α = type(p).

Now, assume that ei−1 has been defined having properties (i) to (iii). Then

ei−1(di(xij)) = di−1(di(xij)) + y = y

with type(y) < type(xij) and ei−2(y) = 0. Since ei−1 satisfies (iii), there exists z ∈ Mi−1

with ei−1(z) = y and type(z) ≤ type(y). Let ei(xij) = di(xij) − z. Extend ei linearly to
Mi and notice that ei−1ei = 0. It is clear that ei satisfies (i) and (ii); we have to verify
(iii).
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Suppose we’ve shown Mβ
i

ei−→Mβ
i−1

ei−1−−→Mβ
i−2 is exact at Mβ

i−1 for all β < α, and
suppose ei−1(x) = 0 for some x ∈ Mα

i−1 having type α. Then di−1(xα) = 0, so there
exists y ∈ M

(α)
i with di(y) = xα. Let z = ei(y) − x. Then ei−1(z) = 0 and type(z) < α.

By induction, there exists w ∈ Mi with ei(w) = z and type(w) < α. It follows that
ei(y − w) = x with y − w ∈ Mα

i .
As the following example shows, it is not generally true that (M∗, e∗) is minimal when

(M∗, d∗) is.

Example 6.4. Let A = k[y1, . . . , y6], J = 〈y2
3 − y1y5, y3y4 − y1y6, y2y4 − y3y5, y2

5 −
y2y6, y4y5 − y3y6〉, and I = 〈y2

3 , y3y4, y2y4, y2
5 , y4y5〉. The internal Betti numbers for

the minimal resolutions of A/I and A/J are as follows.

A/I A/J
d : 0 1 2 3 4 5 d : 0 1 2 3 4 5

β0d : 1 β0d : 1
β1d : 5 β1d : 5
β2d : 5 1 β2d : 5
β3d : 1 1 β3d : 1

However, with some further conditions on the di’s in Proposition (6.3), we can conclude
that (M∗, e∗) is minimal. Let A+ be the ideal of positive degree elements in the polynomial
ring A.

Proposition 6.5. Let (M∗, d∗) satisfy the hypotheses of Proposition (6.3), and assume
that, for each i ≥ 1, there is a positive integer ki such that the entries of the matrices
representing di are all homogeneous polynomials of degree ki (i.e. (M∗, d∗) is pure). Also,
assume that each of the monomials in z0j has polynomial degree greater than or equal to
k1. Then the maps ei can be chosen so that ei(Mi) ⊆ (A+)kiMi−1.

Proof. We use induction on i. By hypothesis, e1(M1) ⊆ (A+)k1M0. Suppose that for each
j < i we have chosen ej so that ej(Mj) ⊆ (A+)kj Mj−1 for each j less than i. In the proof
of Proposition (6.3), we set ei(xij) = di(xij)− z, where z was chosen with ei−1(z) = y =
ei−1(di(xij)) and type(z) < type(xij). By hypothesis, di(xij) ∈ (A+)kiMi−1, but what
about z?

Since y = ei−1(di(xij)), we know by induction that y ∈ (A+)ki+ki−1Mi−2. Since the
matrix for ei−1 may contain polynomials of degree greater than ki−1, it is conceivable that
z could contain monomials which are not in (A+)kiMi and still have y ∈ (A+)ki+ki−1Mi−2.
To prove the proposition, we must choose z more carefully than before.

Since ei−2(y) = 0, we know by Lemma (6.1) that di−2(l.t.t.(y)) = 0. By the exactness
of (M∗, d∗) and the fact that this resolution preserves type, there is a z1 ∈ Mi−1 of
homogeneous type such that di−1(z1) = l.t.t.(y) (which is in (A+)ki+ki−1Mi−2). Since
di−1 is homogeneous of degree ki−1, it follows that z1 ∈ (A+)kiMi−1. And from this it
follows that ei−1(z1) ∈ (A+)ki+ki−1Mi−2.

Now let y1 = ei−1(di(xij)−z1) = y−ei−1(z1). Then type(y1) < type(y), ei−2(y1) = 0,
and y1 ∈ (A+)ki+ki−1Mi−2. Applying the above argument again with y1 in the role of y,
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we construct z2 and y2, then z3 and y3, etc, until yr = 0. We then set z = z1 + · · · zr. By
construction, ei−1(z) = y and z is in (A+)kiMi−1.
Remark 6.6. This proposition should be compared to Wahl ([W], Remarks 1.8).

Section 7. Motivating example.
In this section we describe the ring B = H∗(F8 ×7 F∗

8;F2) = F2[x, y, z]Z/7. We
fix a primitive 7-th root of unity, ω, in F8 by insisting ω is a root of the polynomial
t3 + t2 + 1 ∈ F2[t]. Then the action of left multiplication by ω on F8 = F2(1, ω, ω2) is
given by the 3× 3 matrix

T =

 0 0 1
1 0 0
0 1 1

 .

Here are the 13 generators for B.
a = x3 + y3 + z3 + x2y + y2z + xz2 + xyz,
b = x4 + y4 + z4 + x2y2 + y2z2 + x2z2 + x2yz + xy2z + xyz2,
c = x3z + x2y2 + x2yz + xy3 + xy2z + xz3 + y3z + y2z2,
d = x4 + x3y + x2y2 + x2yz + xy3 + xz3 + y4 + yz3 + z4,
e = x5 + y5 + z5 + x4y + y4z + xz4 + x2y2z + x2yz2 + xy2z2,
f = x4z + x3z2 + x2y3 + x2yz2 + x2z3 + xy4 + xy2z2 + xz4 + y4z + y3z2,
g = x4y + x3y2 + x2y3 + x2y2z + x2yz2 + x2z3 + xy4 + xz4 + y2z3 + yz4,
h = x4y2 + x2y4 + y4z2 + y2z4 + x4z2 + x2z4 + x4yz + xy4z + xyz4 + x2y2z2,
i = x5z + x4z2 + x4y2 + x4yz + x2z4 + xy5 + xy4z + xz5 + y5z + y2z4,
j = x5y + x4yz + x2y2z2 + x2z4 + xy5 + xz5 + y2z4 + yz5,
k = x4y2z + y4xz2 + z4x2y + x4yz2 + y4x2z + z4xy2,
l = x6z+x5z2 +x4y2z+x4yz2 +y5x2 +z5x2 +y4x2z+y6x+y4xz2 +xz6 +y6z+y5z2,
m = x5z2+y3x4+x4yz2+z3x4+x3z4+z5x2+z4x2y+y4xz2+z4xy2+y5z2+y3z4+y5x2.

And here are the 54 relations (listed by degree).
R1 = ag + b2 + bd + c2,
R2 = ae + af + b2 + cd,
R3 = af + ag + bc + bd + d2,
R4 = ah + aj + bf + bg + ce,
R5 = a3 + ah + ai + aj + be + bf + bg + cf ,
R6 = a3 + aj + be + bg + cg,
R7 = ah + ai + aj + be + bf + de,
R8 = aj + bf + bg + df ,
R9 = a3 + ai + be + bf + bg + dg,
R10 = a2c + am + bi + ch,
R11 = a2b + a2c + a2d + ak + al + bh + bj + ci,
R12 = a2c + al + bh + cj,
R13 = a2b + a2c + a2d + al + am + bj + dh,
R14 = ak + al + am + bh + di,

22



R15 = ak + al + bi + bj + dj,
R16 = a2b + ak + bh + e2,
R17 = a2b + a2c + a2d + am + bh + bj + ef ,
R18 = a2b + a2d + al + am + bh + bi + bj + f2,
R19 = al + am + bh + bi + bj + eg,
R20 = a2b + a2d + ak + am + bj + fg,
R21 = al + bi + g2,
R22 = a2f + a2g + ab2 + abd + bl + bm + cm + dk,
R23 = a2e + a2f + ab2 + abc + bk + bl + bm + ck + cl + dl,
R24 = a2g + ab2 + abd + bk + bm + cl + cm + dm,
R25 = a2e + ab2 + bm + ck + cl + cm + eh,
R26 = a2f + a2g + ab2 + abc + abd + bk + bl + ck + cm + ei,
R27 = a2e + abc + abd + bl + cl + cm + ej,
R28 = a2f + a2g + ab2 + abd + bl + bm + ck + fh,
R29 = a2f + a2g + ab2 + abd + bk + bl + bm + cl + fi,
R30 = a2e + ab2 + abc + bk + bl + ck + cm + fj,
R31 = a2g + ab2 + abd + bk + bm + cm + gh,
R32 = a2e + a2f + a2g + abc + abd + bk + ck + cl + gi,
R33 = a2g + ab2 + abc + abd + bk + bl + bm + cl + gj,
R34 = a2i + b2c + em + fk,
R35 = a2i + abf + b2c + el + h2 + fl,
R36 = a4 + a2j + b2c + b2d + el + em + fm,
R37 = abf + abg + b3 + b2d + el + em + gk,
R38 = a4 + abg + b2c + b2d + el + em + h2 + gl,
R39 = a4 + abe + abg + b3 + b2d + em + h2 + gm,
R40 = a4 + a2h + b3 + ek + h2,
R41 = a2h + a2i + a2j + b3 + b2d + el + hi,
R42 = a2h + a2j + abf + b3 + b2c + b2d + em + h2 + hj,
R43 = a2i + abg + b3 + b2c + b2d + em + i2,
R44 = a4 + a2j + abe + abg + h2 + ij,
R45 = b2c + el + em + h2 + j2,
R46 = a3b + a3d + a2m + b2g + hl + ik,
R47 = a3d + a2k + a2m + abh + abi + abj + b2e + b2f + hm + il,
R48 = a3c + a2k + abh + abj + b2f + b2g + hk + hl + im,
R49 = a3c + abh + abj + b2f + b2g + hk + hm + jk,
R50 = a3b + a3c + a2k + a2l + a2m + abi + abj + b2e + b2f + b2g + hk + jl,
R51 = a3b + a2l + a2m + abh + abi + abj + b2e + b2g + hl + jm,
R52 = a3g + a2b2 + a2bc + a2bd + abk + abm + acm + b2i + km + l2,
R53 = a3e + a3g + a2b2 + abl + ack + acl + b2i + b2j + k2 + kl + lm,
R54 = a3g + a2bc + abk + abl + acm + b2h + b2j + kl + km + m2.

Now consider the ring B⊗F8. If we tensor a minimal F2 resolution of B with F8, we
will have a minimal resolution of B ⊗ F8 (since F8 is flat over F2). Over F8 the matrix
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T diagonalizes to diag(ω, ω2, ω4), where ω is a primitive 7-th root of unity. It follows that
B⊗F8 = F8[x1, x2, x3]Z/7 is isomorphic to the ring B2 discussed in Section 5. Its minimal
resolution is determined there. The Betti numbers for this ring are

(1, 54, 320, 945, 1728, 2100, 1728, 945, 320, 54, 1).

The internal Betti numbers are given on the next page.
Remark 7.1. We remark that the rings H∗((F8 ×7 (F∗

8 ×7 Gal)
)
;F2

)
= F2[x, y, z]H21

and H∗(BG2;F2) = F2[x, y, z]GL3(F2), where Gal is the Galois group of F8 over F2 and
G2 is the exceptional Lie group, are also of interest to topologists. The first of these has
generators {a, b, e, h, k} and relations {a2b + ak + bh + e2, a4 + a2h + b3 + ek + h2}. The
second is the polynomial ring F2[b, h, k], which is also known as the rank 3 Dickson algebra.

24



The internal Betti numbers for H∗(F8 ×7 F∗
8;F2).

d β0d β1d β2d β3d β4d β5d β6d β7d β8d β9d β10,d

0 1

...

8 3

9 6

10 12

11 12

12 12 2

13 6 12

14 3 30

15 50

16 66

17 66 6

18 50 24

19 30 66

20 12 117

21 2 168

22 183 6

23 168 30

24 117 84

25 66 168

26 24 258

27 6 318 2

28 318 21

29 258 66

30 168 152

31 84 258

32 30 357

33 6 388 6

34 357 30

35 258 84

36 152 168

37 66 258

38 21 318

39 2 318 6

40 258 24

41 168 66

42 84 117

43 30 168

44 6 183

45 168 2

46 117 12

47 66 30

48 24 50

49 6 66

50 66

51 50

52 30 3

53 12 6

54 2 12

55 12

56 12

57 6

58 3

...

66 1
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Appendix. Homomorphisms for Example (2.2).
The minimal resolution of the ring B described in Example (2.2) has the form

0−→A
d4−→A9 d3−→A16 d2−→A9 d1−→A

d0−→B−→0,

where the homomorphisms d1, d2, d3, d4 are given respectively by the following matrices:

( y2
3−y1y4 y3y5−y1y6 y3y4−y2y5 y2

4−y2y6 y4y5−y3y6 y2
5−y1y7 y4y6−y2y7 y5y6−y3y7 y2

6−y4y7 ) ,

y4 y5 0 y6 0 0 y7 0 0 0 0 0 0 0 0 0

−y2 −y3 y5 −y4 0 y4 −y6 0 y6 0 0 y7 0 0 0 0

−y3 0 0 0 y4 −y5 0 y6 0 0 y7 0 0 0 0 0

y1 0 0 0 −y3 0 0 0 0 −y5 0 0 y6 0 y7 0

0 y1 0 y3 y2 0 0 0 y5 y4 0 0 0 y6 0 y7

0 0 −y3 0 0 −y2 0 0 −y4 0 0 −y6 0 0 0 0

0 0 0 0 0 y1 0 −y3 0 y3 −y5 0 −y4 0 −y6 0

0 0 y1 0 0 0 y3 y2 0 −y2 y4 y5 0 −y4 0 −y6

0 0 0 0 0 0 −y1 0 y1 0 0 0 y2 y3 y4 y5


,



−y5 y6 0 0 y7 0 0 0 0

y4 0 y6 0 0 y7 0 0 0

−y2 0 −y4 0 0 −y6 0 0 0

0 −y4 −y5 0 0 0 0 y7 0

0 −y5 0 y6 0 0 y7 0 0

y3 −y4 0 0 −y6 0 0 0 0

0 0 0 0 −y4 −y5 0 −y6 0

0 y3 0 −y4 −y5 0 0 0 y7

0 y2 y3 0 0 0 0 −y6 0

−y1 y3 0 0 0 0 y6 0 y7

0 0 0 0 y3 0 −y4 0 −y6

0 0 0 0 y2 y3 0 y4 0

0 −y1 0 y3 0 0 y5 0 0

0 0 −y1 −y2 0 0 −y4 y5 0

0 0 0 0 −y1 0 y3 0 y5

0 0 0 0 0 −y1 −y2 −y3 −y4



,



y2
6−y4y7

y5y6−y3y7

−y4y6+y2y7

y2
5−y1y7

−y4y5+y3y6

y2
4−y2y6

−y3y5+y1y6

−y3y4+y2y5

y2
3−y1y4


.
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