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1. INTRODUCTION

Let G be a complex reductive algebraic group and let p: G — GL(V) be
a finite dimensional complex G-representation. There is a natural
morphism g ,: V- V//G, where V//G denotes the set of closed orbits in
V' equipped with the structure of a complex variety. This morphism
provides a natural quotient in the category of complex G-representations.
A G-representation, V, is said to be equidimensional if all the fibres of ns ;.
have the same dimension. If V//G is smooth then V is called coregular.
A G-representation which is both equidimensional and coregular is said to
be cofree.

In general, the G-module structure of the coordinate ring, C[ V], of a
G-representation is very complicated. However, representations which are
coregular and/or equidimensional are much better understood. For exam-
ple, if (V, G) is cofree then there exists a graded G-stable subspace S of
C[ V] such that C[V]=C[V]°®S. The G-module structure of S is
described by a theorem due to Schwarz [Schl, Prop. 4.6]. Here we give a
generalization of this theorem to equidimensional representations (Proposi-
tion 2.1.1). Specializing this result to finite groups recovers a theorem of
Stanley [St, Prop. 497].

In 1976, V. L. Popov conjectured that if G is a connected semi-simple
group then every equidimensional G-representation is also coregular [P1].
Since then, this conjecture has been verified by Schwarz for simple groups
[Sch2], by Littelmann for irreducible representations of semi-simple
groups [Lil] and by the author for tori [Weh2]. (It has been further
conjectured that the hypothesis that G be semi-simple may be weakened to
G being reductive or even to G being any complex algebraic group.)
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TABLE 1

Spin(r1) x Spin(n), m=n

Plain representation Method d

1 C"®C" Slice 6a.2 n

Here we prove the Popov Conjecture for a large class of the semi-simple
groups having exactly two simple factors. The method of proof is via
classification of the equidimensional representations of these groups: Let
G=G,x G, be a connected semi-simple group having two simple factors
not both of which are isomorphic to special linear groups. If V is an
equidimensional representation of G then either ¥ decomposes as (V, G) =
(V,,G,)®(V,, G,) or V is a subrepresentation of one of the representa-
tions listed in Tables [-XVIIL. We show that all the representations we list
are coregular. Hence our classification verifies the Popov Conjecture for
groups of this form (Section 5).

Since every subrepresentation of an equidimensional (resp. coregular)
representation is itself equidimensional (resp. coregular) [Weh3, Schl], we
need to find all the maximally equidimensional representations. That is, we
must find all those representations (¥, G) such that (V® W, G) is not equi-
dimensional for all non-trivial G-representations W. Clearly adding a trivial
representation to an equidimensional representation yields a new larger
equidimensional representation. Thus we seek all the maximally equi-
dimensional representations (V, G) with V9= {0}. To verify the Popov
Conjecture we must show that each of these representations is coregular.

TABLE II

SP(m)xSP(n), m=n

Plain representation Conditions Method d
1 C"@C"®2C™ mzn+2 Slice 7b.2 n+1
2 C"@C"e2C” Slice 7b.1 m
3 C"C'eC"eC” Slice 7b.4 n
4 C"RC"®2C" Slice 7b.8 n
5 C"RC @ ,(6) Slice 7¢.16 9
6 C"®C‘eSsC? Slice 7¢.18 6
7 C"RC'®20,4) Slice 7¢.20 7
8 C"RC'@C"® e.(4) Restrict, 1-PSG 5
9 C"RC'@p()DC* Slice 7¢.22 5
10 C'RC'®0,(41® ¢,(4) 1-PSG 6
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TABLE Il
SP(m) x Spin(n)
Representation Conditions Method d
I C"®C"eC” mzn Slice 7a.2 n
2 C"C'C” m<n, (m, n)#(4, 8) Slice 7a.l m
3 C"eC'eC” mzn Slice 6b.1 n
4 C"C"®C" m<n Slice 6b.8 m+1

5 C"®oa(7) mz=8 Slice 12a.9 7
6 C'®a(7) Slice 3.8 6
7 C"®C*®aot(8) mz=8 Slice 10.13 8
8 C°RC*®a™(8) Slice 9¢.9 7
9 C"®C*®a"(6) mz6 Slice 10.24 4
10 C*RC*®a'(6) Slice 9e.12 3
1 C"RC°@®a(5) Slice 10.33 4
12 C'RC"® ¢,(4) Slice 7a.16 5
13 C'®RC*®o"(12) Strata 7
14 C'®CY°®o*(10) Ladder 4
15 C*RC°®a(9) Slice 9b.15 6
16 C'RC*PC*'®o"(8) Slice 9¢.24 6
17 C'RC*®Do,(4)Da’(8) 1-PSG 7
18 C'RC’®a(7) Slice 94.9 S
19 C*'®aNHdC* Slice 3.16 5
20 C'®a(7)Da4) Slice 3.17 6

TABLE [V

SP(4)x G,

Plain representation Method d
1 C'®0,(G,) Slice 3.18 4
TABLE V
H x SL(n), H Simple
Representation Conditions Method d
1 WRC"®p(H) dim W=n, p(H)" = {0}, Ladder 1 +dim p(H)/H

p(H) maximally EQ

2 WRC"®C"®p(H) dim W =n, W non-plain, Strata 1 +dim(W D p(H))/iH
p(H)" = {0},
(W@ p(H)) maximally EQ
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TABLE VI
(a) SO(m)xSL(n)  V>S8*C"”
Plain representation Conditions Method d
1 C"®C"®SsC” m<n—1 Expand m+1
2 C"C"®S}C m=n Substrata n+1
I C"eC'eSsicr m<n—1 Strata and m+1
4 C"RC"PSC™ mzn induction n+1
(b) SO(m)xSL(n) VoA2C"
Plain representation Conditions Method d
1 C"RC"AA’C"®C™ m<n+1, neven Expand m+ 1
2 C"RCTAANCTE®C” mzn+2 Substrata n+2
3 C"RC'AANCT"@C” m<n—1 Compare 6a.1 m+1
4 C"RC"ANC"RC mzn Compare 6a.2 n+ 1
S C"RC"@ANC'@C” m<n—1, neven Expand m+1
6 C"RC"@NC"@C™ m=n, neven Expand n+1
7 C"®C"ONCTPC™ m<n, neven Strata and m+1
8§ C"RC"ONC”OC mzn+1, neven induction n+2
9 C"RC"ANCTHC™ m<n—1,nodd Strata m
10 C"®C"®AC”@®C” m<n—1, neven Slice 6b.9 m+ 1
11 C"®C'"ANC"@®C” m>=n, neven Slice 6b.10 n+1
12 C"QC"@ANC"@C” m<n—2, nodd Slice 6b.11 m
13 C"RC"aNCeC” m<n—1 Compare 6a.3 m+1
14 C"RC'ANC"PC” mz=n Compare 6a.4 n+1
{c) SO(m)xSL(n), m>n  V38C", Va2 C™
Plain representation Conditions Method d
. -2 +2
1 C"®C"®&rC"C” r:n—, n even Strata 2+<r 5 )
. - r+2
2 CO"RC'erCcteCm r= ,m>=n+2, nodd Strata 2+ 5
. — 2
3 CRCeICTec! r=n23,nodd Strata 2+<'“; )
4 C"RCTBC ®C” r:[”gl] Restrict 1+<’;2>
. . r+1
5 C"®C'@rC" r=n/2, n even Restrict 1 +< ) >
6 C"RC*@dA'C Strata 6

Table continued
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(d) SO(m)xSL{n), m<n

Va8 vaaic

Plain representation Conditions Method d
1 kC"QC"@(n—km)C"®HC™  2kb+clsm+1 Strata 1+ b(n—km)
@cCn (m.k, c) % (26— 1,1,0) Kbt ot 1
+
2
w1 n n nv b+ 1
2 C RC"B(n-26)C"EbC 6<2bgn Strata b{n—2b)+ 5
- . n—1 r+2
3] C'pCeC"drC” r= 5 Strata 1+ )
4 C"RC"O@NC"®(n—m)C” Strata n+1
ec”
5 CRC'DACE Strata 6
6 C°RC*OA’C? Strata 5
TABLE VII
(a) SPm)xSL(n) V>8]
Plain representation Conditions Method d
1 C"®C'@S*C"aC” m<n—1 Expand m+1
2 C"RC"SC"eC” mz=n Substrata n+1
1 C"C"eSIC'eC” m<n—2 Expand m+2
4 C"RC"HSIC"BC" mzn—1 Expand n+1
5 C"RC"®S}C'eC” m<n—-2 Expand m+2
6 C"R®C"®SC"dC™ m=n, neven Expand n+1
7 C"RC"®S}IC"aeC” m<n~—1 Slice 7a.9 m+1
8§ C"RC"®S*C"dC™ mzn Slice 7a.10 n+1
9 C"RC"®SC"aC” m<n—2 Strata and m+2
10 C"RC"PS*]C"aC" mzn—1 induction n+1
11 C"®C"®SIC"pC” m<n—2 Strata and m+2
12 C"RC"@SCHC” mzn, neven induction n+1
13 20"®C'@S¥C? Ladder 6
14 C"RC'® ¢,(m)@®2S°C? Ladder m4 2
15 C"RC'@e,(m@S*C*dC? Ladder nm+1
16 C°RC"AS’C"” @ p,(4) nz4 Ladder 6
17 C*®C @ 04(6) DS C? Ladder 5

Table continued
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TABLE VII—-Continued

(b) SP(m)x SL(n) Vo ARCT

Plain representation Conditions Method d
1 C"RC"®&AC"®2C™ m < n, neven Expand m+1
2 C"®C'eANC'@2C mz=n+2 Substrata n+2
3 C"RC"eACTeCTBC” ms<n—1 Compare 7a.l m+1
4 C"RC"ENC'HC"BC™ mzn Compare 7a.2 n+1
5 C"RC"AAC'@C”®C™ m<n, neven Expand m+1
6 C"RC"OANC"HC"C” m=n+2, neven Restrict n+1
7 C"RC"@NC"®2C" m<n—2 Compare 7a.3 m+2
8 C"RC"@NC"@2C" mzn—1 Compare 7a.4 n+1
9 C"RC"OANC"HC"PHC™ m<n—2 Compare 7a.5 m+2
10 C"RXC"AONC"RC"DC™ mz=n, neven Compare 7a.6 n+1
Il C"R®C"@A*C"@®2C" m<n—2, neven Expand m+2
2 C"RC"AANC'@®20T mzn, neven Substrata n+1
2 . -1

13 C"QC"@A‘C"'dC” mz2n—1,n odd Expand nj

14 C"QC*'@2AC? mz4 Strata 6

15 C'RC"® (YA C" nz4, neven Strata 5

16 C'RC"@ o)A C" nzS5, nodd Strata 2

(c) SP(m)xSL(n) Vo APCT

Plain representation Conditions Method d
1 C"RC"@AC”@2C™ m<n, neven Strata and n+1
2 C"RC"ANC”®2CT mz2n+2, neven induction n+2

3 C"RC"ANC”P2C m<n—1, nodd Strata m
4 C"RC" AN C”@C"DC™ m<n—2, neven Strata and m+1
S C"RC"ANCTOHC"®C” m>=n, neven induction n+1

6 C"RC"ANC”@C"®dC” m<n—3, nodd Strata m
7 C"RC"@A'C”@C"®C™ m<n—1 Compare 7a.7 m+1
8 C"RC" @A C"@C"BC™ mzn Compare 7a.8 n+1
9 C"RC"ANC"@2C" m<n—2, neven Slice 7c.1 m+2
10 C"RC"OAIC”@2C” m=n, neven Slice 7¢.2 n+1
11 C"RC"®AC"@2C” m<n—3, nodd Slice 7¢.3 m+1
12 C"QC'"OANCTBC DC™ m<n-—2 Compare 7a.9 m+2
13 C"RC"@ANC"pC'dC™ mzn—1 Compare 7a.10 n+1
14 C"®C"@A*C”@2C" m<n—2 Compare 7a.l1 m+2
15 C"QC"®A*C” @®2C™ m=n, neven Compare 7a.12 n+1

Table continued
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(c) SP(m)xSL(n) Vo AICT
Plain representation Conditions Method d
16 C°RC"@®AIC" @ o,(6) n>=6, neven Strata 10
17 C*RC"®@AIC" @ 0,(6) n>7, nodd Strata 9
18 C'®C"®A*C" @S C* n>6, neven Strata 7
19 C*'C"®A2C” @St nz5, nodd Strata 6
20 C'RCOAC"D20,(4) nz6, neven Strata 8
21 C'RC"QAC” @20,(4) n=5, nodd Strata 7
22 C'RCONC”Do,(4)@®C* n>6, neven Strata 6
23 C'RC"AONC”" Do) C* nz5, nodd Strata 5
(d) SPn)xSL(n), m>n V38", vp A C™
Plain representation Conditions Method d
1 C"®C"®rC™” r:n-;—l‘ n odd Restrict (;)
2 C"®C"®rCTec” r=n/2, n even Restrict 1 +<r; l)
. . 1
3 C"eC'eC'erC” r=n/2, neven Restrict 1 +<r42— >
. - 1
4 C"'RC@ICT®C! r=""_ nodd Strata 1+<'; )
. -2 .
S C"RC"erC”@2Cm r=n , neven Restrict, strata 2+ (r;Z)
6 CH'C"®rC”®2C"" r=——, nodd Strata 2+(';2>
. n—1 . r+2
7 C"®C"@®rC"®2C” re= ,mzn+3, nodd Restrict, strata 2+( 5 )
. n—1 . r+2
8 C"RC"@C'PrC @ C” r:[ 5 :, Restrict, strata 1+< 2 )
. n—1 . r+2
9 C"RC'd2C"®rC r=|: 3 ] Slice, strata 1+ 5 )
10 C"RC™ '@ q@,(m) m#4 Castle m/2—1
11 C"®C*dA’CtdC™ Strata 6
12 C"RC*dA’C*aCt Strata 6
13 C*"®C*Psi(4) Ladder 6
14 C"®C @ sl(3) Ladder 3

Table continued
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TABLE VII—Continued

(d) SP(m)xSL(n), m>n

VeSS v pAtCt”

Plain representation Conditions Method d
15 2C"®C’@C? Strata 5
16 C"RC*®@,(m)@S'C? Ladder m+1
17 C"RC @ @,(m)@®S’C? Ladder m
18 C"®C*® ¢, (m)@2C* Ladder m
19 C'RC° @ (6)DC* Strata 4
20 C°RC P i(6)C* Castle 4
2l CORC D ,(6) Castle 3
22 C'C®oei6)dC? Strata 6
23 C°RCPBe,(6)dC° Ladder 4
24 C'RC D ,(6) Castle 5
25 C°RC*Q @,(6) Strata 3
26 C'®C'epsict Castle 4
27 C'®CreSsic? Strata 5
28 C'OC D 2¢,(4) Castle 4
29 C'®C'@oe,4)@C* Castle 3
30 C'RCD e, (4)DC Strata 2
3 C'RC D, (4)®2C} 1-PSG s
32 C'RCIP2p,4) 1-PSG 6
33 C'eCe®e,4)sC* 1-PSG 4
(e) SP(m)xSL(n), msn  VpSX", A2C™
Plain representation Conditions Method d
1 kC"RC"® (n—km)C"@®bC™  2kb+c)<m+2 Strata b(n —km)
®cC” (m, k, ) #(26—2,1,0) Kb+ e
+< )+1
2
2 C*PIQCT@(n-2b+1)C" 6<2b<n+1 Strata b(n—2b)
@bc bl
2
— . r+1
I OU'Cecerc” r=n{2, neven Strata l+( o )
— - - 2
4 TRCBCBICTOC r=n22.neven Strata 1+<'; )
s C"RC'®C"®rC™ r—nzz,neven Strata l+<r;2>

Table continued
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(e) SP(m)xSL{n), m<n

V¢ SZC"M, /\2 C"M

Plain representation Method d
N n— r+2
6 CI'RC"®2C"®rC" r=—- Strata 1+ )
7 2C"®RC*T™®C” Castle 2
8 C"RC"®S)IC"@® (n—m)C” Strata n+1
@ec
9 C"RC"®@,(m®(n—m)C" Strata n
L oY o
10 C"RC"® ¢,(m)@®(n—m)C" Strata 2n—m
@®2C"
1l 2C"RC"® ¢,(m)® (n—2m)C" Strata n—m
ec
12 2C"®C! m#4 Castle 1
13 2C*'RC’® ¢,(4) Castle 3
14 C'®C'@®C*'®C™ nzs Strata 6
15 C'@C*'@C*'®C* Strata 7
16 C°RC"®(n—6)C"®2C™ Strata 2n—6
@ @5(6)
17 C°RC"®(n—6)C"dC"®C* Slice 7e.16 n
D ei(6)
18 C*RC D CD ¢,(6) Castle 3
19 CRCOA C°HC® Strata 6
20 CRC*OAC*DC® Strata 6
21 C'RCBACT Strata 5
22 C'RC'OACT Subdivide 5
23 C'RC*aANC*DC Strata 5
24 C'C'opACC? Strata 4
25 C'RC'BACoD p,(4) Strata 4
26 C'QC'@si(4) Strata 6

We will rely extensively on the techniques of [Schl, Sch2, Lil] to do this.
However, we will need to extend some of these methods to apply them to
non-simple groups and/or to reducible representations. In addition, we will
need to develop a few new methods to study some of our “more difficult”
representations.
I thank G. Schwarz for all his help and encouragement with this paper.
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TABLE VIII

(a) Exceptional x SL(n) dim ¢ ,(G,)>n

Plain representation Method d
1 ¢ (E;)®C* Castle 1
2 ¢ (E;)®C? Ladder 4
3 eiE)®C*@C* Strata 3
4 o (E)eC? Castle 1
5 o(E)®C* Castle 3
6 ¢ (E)®C? Ladder 3
7 o (E)®@C? Ladder 1
8 ¢, (F)®C* Castle 2
9 (pl(Gz]®C°(-B(pl(G2) Castle 3
10 ¢ (G)RC*CBC Slice 9d.3 5
11 ¢ (G)®C*®2C*" Slice 9d.4 S
12 %(Gz)@CS@wl(Gz) Castle 4
13 0(GeCaC’ Castle 3
14 9,(G)RC’HC™ Slice 9d.7 3
15 9(GRC'OA’C! Slice 9d.9 5
16 ¢,(G)RC*'®C’ Slice 9d.10 4
17 9(GHeCc'eCc Slice 9d.11 4
18 9,(G,)@C'@8C*” Ladder 5
19 ¢,(G)®C'®SC’ Ladder 5
20 ¢ (GHeCaCaC” Ladder 5
2l 9(GHR®C @ 0,(G,) Ladder 4
22 9,(G)®C*@®SX? Ladder 3
23 ¢(G)eCeC’ Ladder 2
(b) Exceptional x SL(n) nzdim ¢ (G,)
Plain representation Method d
1 20,(E;))®@C"®(n—112)C"®dC" Strata n—104
2 9UE)RC"®(n—56)C"®C"" @ ¢,(E,) Strata n—48
3 0 (E))®C"®(n—356)C"®2C™ Strata 2n— 104
4 ¢ (En@cCc*ecC*® Castle 2
5 30(E)®C'®(n—-81)C"®C” Strata n—69
6 20,(E)RC"®(n-54)C"®C" ® ¢ (E() Strata n—42
7 20(E)®@C"@(n—54)C"BC" Do (E,)* Strata n—42
8 0 (E)@C "®(n—27)C"®C™ ®20,(E,) Strata n—15
9 9 (E)RC"®(n—-2T)C"DC" @ o,(Eq)® ¢ (E)* Strata n—15
10 @(E)®C"® (n—27)C"®C"” D20 ,(E)* Strata n—1§

Tuble continued
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TABLE VIIl—-Continued

(b) Exceptional x SL(n) nzdim ¢ (G))

Plain representation Method d
11 oUE)RC"®(n—-27)C"D2C"" @ ¢,(E) Strata mn—42
12 (E6)®C"®(n—27)C"@2C"‘G—)(pI{E(,)* Strata 2n—42
13 (E6)®C"®(n—27)C"@3C” Strata 3In—69
14 ¢(E)® @C”@w,(E ) Castle 5
15 ¢ (E)®CTDCT @ o (Eg)* Castle 5
16 20(F)®C"® (n—52)C"®C™ Strala n—43
17 ¢(F)®RC"®(n—260C"®C" @ o, (F,) Strata n—17
18 ¢ (F)®C"®(n—-26)C"®2C™ Strata 2n—43
19 3p,(G)RC"®(n-21)C"®C™ Strata n—13
20 20(G,)RC"®(n—14)C"®C” ® ¢,(G>) Strata n—=6
21 9,(G)RC"®(n—-T)C"@C” @20 (G,) Strata n+1
22 9 (GHRC"®(n—T)C"@2C" @ ¢,(G,) Strata 2n—=6
23 9(G)RC"®(n—-7)C"@3C” Strata 3n—13
24 0(G,)RCTeC’aC” Strata 4
25 0dG)RC'®C'®0,(G,) Strata 4
TABLE X
(a) Spin{m) x SL(n)
Vo a(m), mzll,m>n
Plain representation Method d
1 CH*RCY@o'(14) Castle 3
2 CHRC@at(14) Castle 4
3 CHRC'®o’(14) Strata 7
4 CHRC*®s'(14) Ladder 4
5 ClecCaa(12)pCH! Castle 4
6 C'eC'e@s (12)C' Strata 4
7 CRRC "®a- llZ)@C“’ Castle 5
8 CFRC"@s(12)®C Expand 5
9 C‘3®C“@a*(12l®c° Castle 6
10 CPC°dat(12)C” Expand 6
11 CUeC*®s (12)®CH Castle 7
12 CPRC®st(12)DCY Expand 7
13 CPRC'®d*(12) Castle 4
14 CU®C*®o (12) Strata 6
15 CPC®d (12)®C? Strata 7
16 CPRC*®e"(12)®C* Strata 6
17 C@C'ed (12)®CY Strata 6
18 C@C'os (12)aC? Ladder 5

Table continued

481:154/2-11
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TABLE IX—Continued

(a) Spin(m) x SL(n)

Vo a(m), mztl:m>n

Plain representation Method d
19 CP®C*@o (12)®S*C? Ladder 5
20 CRC*@o(12)®C? Ladder 4
21 C"@C"@a(ll) Castle 3
22 C'"@C'@®o(11) Castle 4
23 C'"®C*@o(ll) Castle 5
24 C"@C'@®o(11) Castle 6
25 C'"@C*@o(l1l) Strata 6
26 C'"®@C'@a(11) Ladder 5
27 C'"®C@a(1l) Ladder 4

(b) Spin(m) x SL(n)

Voa(m), m=9, 10, m>n

Plain representation Method d
1 C°®C’°®0'(10)@3C* Strata 11
2 CRC*®o*(10)@3CY Expand 12
3 C'@C'®et(10)@2C7" Expand 8
4 CO'RC*Pat(10)®C* Strata 5
5 CYRC'Po"(10)@AC? Strata 7
6 C’RC'®e"(10)@®2C* Strata 8
7 C'QC*@o(10)®AC? Ladder 5
8 C*'"RC*'®o(10)dC* Ladder 4
9 C"RC'@o(10)PCY Ladder 4
10 CYRC*®o*(10) Ladder 2
11 CRCds(9)P2CY Strata 8
12 CC'®a9)®2C™ Castle 9
13 CRC*Po(9)BC* Castle 6
14 CRC@s9)DC* Strata 7
15 C°RC*'@®a9P N C? Strata 7
16 C°RC*®aNBC* Strata 6
17 CRC*'@o(9)®C Ladder 5
18 C°'RC*®a(9) Ladder 3

{c) Spin(8) x SL(n)

Voo (8), 8>n
Plain representation Method d
1 CeC®26'(8)@C’ Castle 6
2 C'eC @20 (8)®C™ Strala 6
3 C'RC®c(8)®De (8)®C” Strata 6

Table continued
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(c) Spin(8) x SL(n)

Voo (8), 8>n

Plain representation Method d
4 C*Coc (8)@C*oC™ Strata 6
5 CCeCecB8)eC’®2C™ Castle 9
6 C*'RC*®2'(8)DC Castle 7
7 C'RC@2 (8)BDC Castle 7
8 C!*RC'Po’(8)Do (B)DC* Slice 9b.12 7
9 C'RC*@®o’(8)DAIC® Restrict 8
10 CPRC'@c (8)PA>C* Restrict 8
1l C'RC*®e* (8)PC*PC* Slice 9¢.5 7
12 C'RC'®c*(8)@C*®C* Castle 6
13 C*®C*®o"(8)d2C* Castle 6
14 C*RC’®207(8) Castle 5
15 C*'®C'®c’(8)Do (8) Castle 5
16 C*RC'®s"(8)C? Castle 5
17 C*RC*®o (B)DAC™ Strata 6
18 C*'RC'®c (8)Y®C'®C* Strata 7
19 C*.®C'®267(8) Strata 7
20 C*'RC'®c (8)Pas (8) Slice 9b.14 6
21 C'C'@®c (8)PC? Slice 9¢.18 6
2 C'C'es (8)@SC? Strata 7
23 C*C'@o’ (8)®SC* Strata 7
24 C*RC'@o BN C*HC? Strata 7
25 C*'RC'@c' B)OANC'RCY Strata 7
26 CPRC'@s" (8)®C'O®CY Strata 6
27 C'®C'@e’(8)@®2CY Strata 6
28 C*®@C'@20(8)®C*? Strata 7
29 C*'C'@s (8)@o (8)@®C™ Strata 7
0 C'eC'os ) CipC™ Strata 7
31 C*RC'@®e’(8)DSIC? Ladder 5
32 C'RC'ec (8)@SCY Ladder 5
33 C*'Cas ®)C’eCc Ladder 5
34 CCRC@c*(8)Dao (8) Ladder 4
35 C*C*®s"(8)®C? Ladder 4
36 CPRC@Ic (8)®S)C? Strata 12
37 C'C'e@ls (8)dC? Strata 11

Tuable continued
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TABLE IX—Continued

(d) Spin(7)xSL(n)

Voa(7), T>n

Plain representation Method d
I C'®C*®20(7) Castle 5
2 CCdaT)®dC’ Castle 4
3 COC'Pa()®CDC Slice 9¢.11 6
4 CC@s(7)@®2C* Strata 6
5 CRC®2(7) Castle 6
6 CRC@cT®C’ Castle 5
7 OC@a7)®C* Slice 9¢.13 4
8 CRC@al)ydC’ Castle 4
9 CRC'Oa(TIBNC? Strata 6
10 CRC'®s@C! Strata 5
N COCdanac® Strata 5
12 CeCds()®SC’ Ladder 6
13 C®Cd®a7)@®sC Ladder 6
14 CRCpaNeC'dCh Ladder 6
15 CRC@20(7) Strata 6
16 CRCda(7)®C’ Ladder 5
17 C'®Cda(7)@®SC? Ladder 4
18 C'®Cda(7)@C? Ladder 3

(e) Spin(m)x SL(n)
V > o(m) or 6*(6)°, m=35,6,m>n

Plain representation Method d
I C*C’®0o'(6)* Castle 3
2 C'RC°®20'(6)Do (6) Castle 4
3 C'RCe26)BC Strata 4
4 CRC B (6)Do (6)@C Strata 4
5 C°RC*@dt(6)®a (6)@C? Castle 4
6 C°RC P (6)DC* Castle 3
7 C°RC®s (6)RC’ACT Castle 5
8§ C'®C'@o(6)? Castle 4
9 C*RC*'®2*(6) Castle 2
10 C°RC'®o'(6)Do (6) Castle 3
11 C*RC'Pa’(6)®C Castle 4
12 C°®C*®a’ (6)®AC? Strata 4
13 C*'®RC'@s*(6)®C? Strata 3
14 C'RC*®s (6)®C* Strata 3

Table continued
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TABLE IX—-Continued

(e) Spin(m)xSL(n)

V> a(m) or o (6), m=35 6 m>n

Plain representation Method d
15 C°RC*®o’(6)@Pa (6) Slice 9d.11 4
16 C°RC'@®s" (6)®C® Strata 5
17 C°R®C*'®0s " (6)®S*C? Strata 5
18 C°RC'@s'(6)@®SCY Strata 5
19 C°RC'@®s’(6)@C'®CY Strata 5
20 C°RC*@o(6) Strata 4
21 C°RC®a (6)DC Strata 4
22 C'RC @20 (6) Ladder 2
23 C'RC*@o’(6)®o (6)DSIC? Ladder 5
24 C'RQC*®o " (6)Pa (6)DC? Ladder 4
25 C°RC'®20(5) Castle 3
26 CRCPa5)BC? Castle 3
27 C'RC*@®o(5)®C* Strata 3
28 CRC@®sS)®C? Strata 4
29 C°RC'®a5)®CY Strata 4
30 C°RC’Ba(S)®SI? Ladder 4
31 CRCOa5)DC? Ladder 3

2. STATEMENT OF RESULTS
Our main result is:

Classification. Let G=G, x G, be a simply-connected connected semi-
simple group having exactly two simple factors and not of the form
G = SL(m) x SL(n). Suppose (V, G) is an equidimensional representation
with V%= {0}. Then either ¥ decomposes as a sum of equidimensional
representations of simple groups: (V, G)=(V,, G,)® (V,, G,) or Vis (up
to an outer automorphism of G) a subrepresentation of one of the
representations listed in Tables I-XVIII. Each representation listed is maxi-
mally equidimensional. Furthermore, all of the representations listed are
coregular and hence also cofree. In particular, the Popov Conjecture is true
for all such groups, G.

Remark 2.0.1. We do in fact list some representations of some groups
of the form SL(m)x SL(n). Specifically, we list all maximally equidimen-
sional representations of the groups SL(m)x Spin(6)=SL(m)x SL(4)
which are not of the form V=k, C"QC*@k,C"RCY @k, C"" RC*'®
k,C™"" @ C* @ p (SL(m)) @ p,(SL(4)).



TABLE X
Spin(m) x SL(n), n2m Voa(m)

Plain representation Conditions Method d
1 kCH¥RC"@o*(14)D(n—14k)C"@HC" ®cC™ kb+c=2 Strata b(n—14k)+8
2 kCPRC"®a(13)B(n— 13k C"OIC” D cCh kb+c=2 Strata b(n—13k)+13
3 CPRC'P2T(12)B(n—-12)C"@C™ Strata n—1
4 CERC"@oT(12)Po (12)P(n—12)C"@C™ Strata n—1
5 kCRRC"®a*(12)B(n—12k)C"®bC" BcC"? kb+c=3 Strata b(n—12k)+ 11
6 CPRC @s*(12)®C" Castle 3
7 kC'"@C"@a(11)®(n—11)C"@IC" @cC!! kb+c=3 Strata b(n—11k)+ 14
8 kCYRC" D2 (10)®(n—10k)C"PIC” @ cC" kb+c=2 Strata b(n—10k)+ 11
9 kC'"R®C"®o*(10)Do~(10)D(n—10k)C"®HC” DcC' kb+c=2 Strata b(n—10k) + 11
10 kC'"RC"®a*(10)B(n—10k)C"®IC” B cC'® kb+c=4 Strata b(n—10k) + 15
11 C°RC*"®20(9)P(n—NC"@C™ Strata n
12 kC°RC"@®a()D(n—9%)C"@®HC” ®cC’ kb+c=3 Strata b(n—9k)+ 11
13 C*RC"®c*B)YDAC” n even Expand 9
14 CCRC"@s*B)BAC™ n=2r>10 Strata 9
15 C*RQC"@s*B)DAIC™ n odd Strata 8
16 kC*RC"@®20*(8)P(n—8k)C"PHC™ @ cC? kb+c=2 Strata b(n—8k)+8
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17
18
19
20

21
22
23

24
25
26
27
28
29
30
31
32

33
34
35
36
37

kC*RQC" Do+ (8)Do (8)D(n—8k)C"®HC™” @ cCt
kC*RC"@a*(8)D(n—8K)C"®HC” @ Ch
C'®Coa B)pC ®2c”

CCRC*D2WB)PCt

CRC*®26(NH@®(n-1C"dC™
kC'RC"@a(1)®(n—Tk)C"®HC” @ C’
CC@®dNaC’adC”

C*'RC"Da* (6) DA’ C™

C6®Cn®a+(6)®/\2 Cn‘

C*RC" Bt (6)DAC”

KC*QC" @20+ (6)P (n—6k)C"BbC™ @ cC°
kC*RC" Dot (6)Po (6)D(n—6k)C"DIC™ @cC®
C'RC"@o*(6)’Pat(6)P(n—-6)C"®C™

CRC" D" (6)’Da _(6)®(n—6)C"HC™
C°RC°Bo (6)Do (6)DCE
CRC: P (O)PC°PC

CRC"Da5YDNC”
CRC"®a(SYDAC™
CRC"P20(5)D (n— 5 C"@dC™
/L(:5®C"®6(5)®(n— S5kYC"@®bCT @ cC?
CRCD(5)®C’

kb+c¢=2
kb+c¢=3

kb+c¢=3

n=2r>8
n odd
n even
kb+c=2
kb+c=2

n even
n=2r+127

kb+c=2

Strata
Strata
Strata
Strata

Strata
Strata
Castle

Strata
Strata
Expand
Strata
Strata
Strata
Strata
Castle
Strata

Strata
Strata
Strata
Strata
Castle

b(n—8k)+8
bn—8k)+8
8
5

n—1
b(n—7k)+9
5

5
4
5
b(n —6k) + 6
b(n—6k)+6
n

[V

4
n—1
b{n—5ky+5
2
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TABLE XI

SP(6) x SL{»)
Vo SP6))®C"  n>dim ¢,(SP(6)) = 14

Representation Method d

I @{SP6))®@C"® (n— 14)C"@®2C™ Strata 2n—19

TABLE XII

(a) Spin(m) x SL(n), n = dim a(m) Voo(m)®C”

Representation Conditions Method d
1 67 (12)RC"®(n—-32)C"®2C" @®CH Strata 2n—53
2 (11 ®C'@®(n—-32)C"®2C™ Strata In—54
3 o' (10)QC"@(n—16)C"@2C"" @2C" Strata 2n-21
4 o' (10)®C"D(n—16)C"®2C" Do (10) Strata 2n-25
5 s9IRC"@(n—16)C"P2C" D C* Strata n—23
6 a(7HIRC"®n-8)C"®2C" ®C’ Strata 2n—10
7 o(NRC"®(n—8)C"@2C" ®a(7) Strata 2n—9
8 o(7)@C"@(n—8)C"@3C™ Strata 3In—17
9 G(TIQC"®N'C” n even Slice 10.13 8
10 o(7H@C"@A*C™ n=2r>=10 Strata 8
11 s(MHRC ®&ACT n=2r+1>9  Strata 7
(b) Spin(m) x SL(n)
Voom®C" dima(m)—22n m>=8
Representation Method d
1 e (12)®C*dC" Ladder 7
2 a(IH®C? Ladder 6
3 e (I)@CYC Castle 2
4 o (10)®@CHapC' Castle 2
5 e (10)@CHpC! Castle 3
6 ¢ (10)®C*®o'(10) Castle 3
7T ¢ (10)@CH“®Do (10) Castle 3
8 sr(10)®CH Castle 1
9 o' (10)®C" Castle 4
10 ot (10)®C* O-rep 4

Tuble continued
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TABLE XII—Continued
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(b) Spin(m) xSL(n)

Voae(m)®C" dima(m)—22n m=8

Representation Method d

11 67 (10)C*®S*C’ Ladder 4
12 6 (10)®C*®SC* Ladder 4
13 o (10)®C'@C'dC* Ladder 4
14 o (10)@C*®o*(10) Strata 3
15 ¢ (10)@C*® e (10) Ladder 3
16 ¢ (10)®@C>@2C! Ladder 7
17 o (10)@C*@®C"®SC? Ladder 5
18 ¢’ (10)®C’pCPeC? Ladder 4
19 6'(10)RC*®S*C? Ladder 3
20 o' (10)®C*@S’C? Ladder 2
21 ¢*(10)® C* @ 2S°C? Ladder 4
22 6 (10)RC*®S]C’'P C? Ladder 3
23 o (10)®C*®2C? Ladder 2
24 s(9)®CH Castle 2
25 e(H®CH Castle 4
26 o(9)®C* Strata 4
27 s9)RC*DC’ Ladder 5
28 a(9)®C®SAC? Ladder 4
29 6(9)RC*PC? Ladder 3
30 C*RC*'®s*(8)®C? Ladder 4

(c) Spin(m)xSL(n), m=6, 7
VoW®C" dim W—-22n, W=04(7), 6> (6)% or o *(6)@®C"*

Representation Method d

1 aHC'HC'BC® Slice 9¢.6 6

2 ()R C*Po(T)DC* Slice 9c.11 6

3 s(7)®Ct@eC'@®C*” Slice 9¢.7 5

4 aHRC'BA*C® Slice 9¢.9 7
5 d7I@C*HACY Slice 9¢.10 7

6 o(7)IRC*PC @ C* Slice 9¢.12 5

7 o(7)®Cc@2C% Slice 9¢.13 5

8 aRC*Pa(7) Castle 4

9 o(MH®C*'C’ Castle 3

10 o(H®C HAIC* Strata 5
11 s(HeCepC*aCc™ Strata 6
12 o(MRC*Do(7) Strata 5
13 o()@C'@C’ Strata 5

481
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Table continued
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TABLE XI1—Continued

{c) Spin(n1) x SL(n), m=6, 7

VoW®C", dmW—-22n W=a(7), ' (6)% or ¢ *(6)®C*

Representation Method d
14 6(NH®C'@®S*C* Strata 6
15 o(7H)@C* @S Strata 6
16 o(HRXC' &N C'C? Strata 6
17 a(1)RC'OAN C'DC* Strata 6
18 s(MHRC*®C*@C” Strata 5
19 o(7HY®C*®2C* Strata 5
20 oNHRC'®a(T1®C” Strata 6
2t o(N)@CaC@C? Strata 5
22 o C*esC? Ladder 4
23 o(7)@C* @S} Ladder 4
24 s@CeCaec” Ladder 4
25 o(HRC'®a(7) Ladder 3
26 (7R C*D2CT®SC? Strata 9
27 a(NHRC®2C7DC? Strata 8
28 ¢'(6)®C* Castle 2
29 o) RC*OC!®C? Castle 2
30 6'(6)°®C? Ladder 2
31 o (HRCCEC®C? Ladder 2

TABLE XIHII

SP(6) x SL(2)

Non-Plain representation Method d
I @i6)®C? Strata 4
TABLE XIV
(a) Spin{m)xSL(n), m>8
VoW®C", dim W=n—1, W Non-Plain

Representation Method d
1 ¢ (14H)RC"® C* Castle 2
2 s (1)RCY@®C™ Castle 3
3 a(13)®C™ Castle 2

Table continued
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TABLE XIV—-Continued
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(a) Spin(m)xSL(n), m=8

VoW®C”, dim W=n—1, W Non-Plain

Representation Method d
4 o (12)®CPCRCH Castle 2
5 o (12)@CReCcHeCh? Castle 3
6 o (12)®CVaC Strata 3
7 ¢ (12)@CT@®C? Castle 2
8 alIHRC¥HCY Castle 2
9 sI)®C'®C! Castle 3
10 267 (10)®@C¥aC™ Castle 2
11 26 (10)®C" Castle I
12 o' (10)®C'"®o (10)®CY Castle 2
13 o (1)RCTECRCY Castle 2
14 ¢ (10)®C"®2C" Castle 2
15 o (10)@C"*®2C'" Castle 2
16 o' (10)®@C*@®C®C' Strata 3
17 6*(10)RC"*"®C*®o(10) Castle 2
18 s (10)RC*®C*PC Castle 3
19 s (1)®CH®CC?® Castle 4
20 o (1O)®CH@C'TeC? Strata 4
21 o' (10)®C @0 " (10) Castle 2
22 s (10)QC" ®a (10) Castle 1
23 s (10)®C @ 2C" Castle 5
24 s(9)RCPCH Castle 2
25 a(HRXCPCH Castle 2
26 s(9)®CE@®C'” Strata 3
27 s9)®CH@C’ Castle 3
28 a () ®CT@C*®C"” Castle 2

(b) Spin(m)xSL{n), 6<m<7
Vo W®C”, dim W=n-1, W Non-plain

Representation Method d
1 sa(H®C*PC'®CH Castle 2
2 a7)IRC*eCt@2C* Strata 7
3 a7 ®C*@C*®2C’ Castle 5

Table continued
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TABLE XIV—Continued

(b) Spin(m)x8SL(n), 6<m<7

FoW®C" dim W=n—1, W Non-Plain

Representation Method d
4 odMHeCddlec’ Strata 5
5 g__)®C7®3_7 Castle 8
6 o) ®C'aCaC Castle 4
7 o(NHeCHC®C” Strata 4
8 s(NR®C’®C'®2C™" Slice 9¢.5 8
9 ¢ (6))RCY@®o'(6)®C" Castle 2
10 ¢'(6)’®C @0 (6)®C" Castle 2
11 ¢ (6)®C @s (6)@C BC®C! Castle 2
12 207 (6)@C"P@C®CH Castle 2
13 67 (6)’®C°®C' Castle 2
14 6 6)@CPC'RCY@CY Castle 2
15 67 (6)RC’@a*(6) Castle 2
16 ¢*(6)’QC°@®ac(6) Castle 2
17 6" (6)RC°BC°RC* ®o(6) Castle 2
18 07 (6)RC°BC*RC° Do (6) Castle 2
19 ¢ (6)RC°HC*'RC’DC® Castle 3
20 o' (6)®SC? Castle 2
21 oY (6)®S'C Dot (6) Castle 2

TABLE XV

SP(m) x SL(n)

Vo W®C" dim W=n—1, W Non-plain

Representation Method d
1 ¢y6)@C°@C®C” Castle 2
2 p6)@CPeCteCc” Castle 2
3 gi6)@CH@C Castle 2
4 gy6)®CeCt Castle 2
5 el6)@CHUPCE Castle 2
6 SIC'eC’ Castle 2
7 pdeCecCiecC e’ Castle 2
8 e4)eC'aC'ect Castle 1
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TABLE XVI
G, xSL(13)
Vo W®C", dim W=n—1, W Non-plain
Representation Method d
1 @(G,)®C" Castle 2

Remark 2.0.2. Determining the maximally equidimensional represen-
tations of the group SL(#m)x SL(n) is more difficult because the represen-
tations (pC9 SL(q)) for p<g have no invariants and so are trivially
equidimensional. Adding a single irreducible representation W to
(kC"®C", SL(m)xSL(n)), where km<n can create quite complex
representations which may or may not be equidimensional.

2.1. A Structure Theorem

Suppose that (V, G} is an equidimensional representation of a reductive
complex algebraic group and let f,, f5, ..., f, be a homogeneous system of
parameters for C[V]¢. (See [Ma, Chaps. 5 and 6] for the definitions of a
homogeneous system of parameters, a regular sequence and a Cohen-
Macaulay ring.) Let S be a graded G-stable subspace such that C[V] =
J @S, where .# is the ideal of C[ V] generated by C[f}, />, ... f,], and
CLfi, f~» - fu], denotes the set of polynomials in the 4 vanables f,, ..., f,
having zero constant term. (When we say that S is graded we mean that
if s=5,+ s, .S with the s, homogeneous then the s, S.) If (V, G) is cofree
then C[V]=C[f;, ... fu]® S [Ko].

TABLE XVII
H xSL(n)
Voo, (HH@W W Non-Plain
Representation Conditions Method d
1 ¢, (SP(m))®S*C? Strata 3
2 @ (SPm)RSC2® ¢, (SP(m)) Strata 3
3 ¢,(SP(m))®SC*®S*C? Strata 3
4 ¢, (SP(m)®S*C*DC? Ladder 2
5 ¢(SP(4))®S*C* @ ¢,(SP(4)) Strata 4
6 ¢,(S0(m))®SC? mz28orm=>5 Strata 3
7 @,(Spin(7)®S*}C2 D a(7) Ladder 5
8 ,(Spin(6))RSC2Da*(6) Strata 4
9 ¢,(G,)®8C? Ladder 4
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TABLE XVIII

H xSL(2)

VoW, @ W,, W,, W, Non-Plain

Representation Method d
1 o(7)®SC? Ladder 3
2 0*(10)®S*C? Strata 3

Given a representation M of G and an irreducible G-representation p, we
denote by M, the isotypic component of M of type p. Thus we have the
(unique) decomposition of M into its isotypic components: M =@ , M.

If (V, G) is cofree and the f; are chosen so that C[ V3% =CL[/,, f3, . f4]
then a formula for the multiplicity of any isotypic component in S is given
in {Schl, Prop. 4.6]. A similar theorem is proven by combinatorial
methods, in [St, Prop. 49] for representations of finite groups. We will
show that this structure theorem is valid for equidimensional represen-
tations of any complex reductive group. In particular the two theorems
mentioned above are specializations of our Proposition 2.1.1.

Since C[V]¢ is Cohen-Macaulay [HR ], there is a positive integer ¢ and
homogeneous elements 7, ..., n, of C[¥]“ such that

ClV1°=® CLS1, o ful i
i=1
Let H be a principal isotropy group of (V, G) and (N, H) the principal slice
representation. Write N =V, @ 6, where 0 is a trivial H-representation and
Vi =1{0}.

ProrosITION 2.1.1. There are isomorphisms of the G-representations,

S=1 copies of @ (C[G x4, V1),

»

=1 copies of @ (dim(C[V,]@ W))W

P

[)
In particular, if (V, G) is stable then S is isomorphic to the direct sum of t
copies of the G-representation C[G/H].

Proof. Let m(p) denote the multiplicity of the irreducible representation
W, in S. Then, since C[V]=C[f,, ... £,]1® S, m(p) is also the multiplicity
of W, in C[F] for any fibre, F, of /= (f}, .., f,): V= C*. Now C“ contains
an open dense subset U such that /(&) is exactly 1 principal fibres for
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all (e U. But all principal fibres are isomorphic to G *4 ¥V, by the
slice theorem of Luna (see Section 4.2). Therefore m(p)W,=S,, =
(D, CLG *4 V]1),,=1 copies of (C[G xy, V' ]),,

As in the proof of [Schl, Prop. 4.6], we may now use a version of
Frobenius reciprocity to show that the multiplicity of p in C[G . V,] is

equal to dim(C[V,]® W,’,")” and from this the result follows. ||

3. THE TABLES

We use the notation of [Sch2] (which follows the numbering of [E]) to
denote the irreducible representations of simple groups. However, we
denote the spinor representations slightly differently. The spinor representa-
tions of Spin(2n) denoted there by ¢, , and ¢, are indicated here by
o (2n) and o*(2n), respectively. Moreover we use ¢*(2n) or o(2n) to
indicate either of these two representations. The spinor representation of
Spin(2n + 1) denoted by ¢, is denote here by a(2xn + 1). Often we will write
C" for the ¢,(H), where H is one of the classical groups and
n=dim ¢,(H). Similarly we sometimes use S"C" and A" C” instead of the
@ -notation. We also use sl(n) to denote the adjoint representation of
SL(n). The symbol p(G) is sometimes used to indicate a representation of
G where we wish to emphasize the group. Furthermore we use ¢* to
indicate the representation dual to ¢. The notation ¢’ will be used to
indicate either ¢ or ¢* We will write 6, to denote the p-dimensional trivial
representation and 6 to denote a trivial representation without specifying
the dimension. The symbol G, indicates the rank two exceptional simple
group while G, stands for any complex reductive algebraic (usually simple)
group.

We will sometimes use overbars (or tildes or hats) to indicate which
group is acting on a representation. For example, if G = Spin(m) x SL{m)
we write (V, G) = (c(m)® C"® A*> C" @ C™, Spin(m) x SL(m)) to indicate
that Spin(m) is acting on o(m) and A? C™ while SL(m) acts on the two
copies of C".

When we refer to Spin(m) we assume that m > 5. Similarly m >4 for
SP(m) and n> 2 for SL(n). Furthermore, we assume that n>4 for table
entries involving (A?C" SL(n)) and that n>5 for those involving
(A2 C", SL(n)). If an entry contains (n — r) W as a sub-representation then
n must be greater than or equal to r.

We shall need the following definition:

DEerINITION.  Let H be a simple group. We call a representation (W, H)
plain if W is (up to an outer automorphism of H) of the form:
Wxk o ®k,0F¥®0,. Let G=G, xG,, where G, and G, are both simple.
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A representation (V,G) of G is called plain if (up to an outer
automorphism of G) V is of the form: V=k, ¢ (G))®¢(G.)®
kyo(G) @ ofG,) @ kyof(G)) ® 0,(G,) @ kyof(G,) ® oG, @
PG D pa(Gr)

The isomorphisms Spin(5) =~ SP(4) and Spin(6) =~ SL(4) cause some ques-
tion as to which of the tables should contain certain representations. For
plain representations this ambiguity is settled by listing a representation in
the form which exhibits its plainness. Thus for example the plain represen-
tation (2¢,(5)® C’ @ C?, Spin(5) x SL(7)) = (2C* ® C” @ ¢,(4), SP(4) x
SL(7)) is listed as a representation of SP(4)x SL(7).

In Tables I-X we list all the equidimensional plain representations.
Tables XI-XVIII contain the non-plain representations. Note also that
Table V contains some non-plain representations.

For each representation, (V, G), in the tables we give in the column
headed “d,” the dimension of V//G. We indicate for each representation the
principal methods we used to prove that it is equidimensional. Most of
these methods are described in Section 4. Kempf has shown that every
representation of a connected semi-simple group with dim V//G<2 is
cofree [Ke] and thus for representations, ¥V, in the tables with
dim V//G<2 we list in the method column a method for computing
dim V//G.

Similarly, it is known that every theta representation is cofree [V]. Thus
the theta representation (¢ ¥ (10)® C*, Spin(10) x SL(4)) is cofree.

4. TECHNIQUES

In this section we describe the methods we use to determine whether a
representation (¥, G) is equidimensional or coregular. We begin with some
preliminaries. Proofs of most of these results may be found in [Kr].

Let X be a factorial affine complex variety on which the reductive com-
plex algebraic group G acts. Then we say X is a (factorial) G-variety and
write (X, G). The ring C[X]¢ of G-invariant functions on X is the coor-
dinate ring of the quotient variety X//G. If X//G is smooth then (X, G) is
coregular. 1f all the fibres of the quotient map ng ,: X' — X//G have the
same dimension (which is then necessarily dim X —dim X//G) then (X, G)
is equidimensional. If (X, G) is both coregular and equidimensional then it
is cofree.

Let xe X. The set of subgroups of G conjugate to G, is called the
isotropy class of G, and is denoted by (G,). We say that a closed orbit Gx
is an orbit of type (K) if G, (K). If the orbit of x is a closed subset of X
then (G,) is called a closed isotropy class and in this case the closed isotropy
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group G, is reductive (Matsushima’s Theorem). A representation can have
only finitely many closed isotropy classes. There is always a dense, open
subset U of X such that the isotropy groups, G,, for ue U, all lic in the
same isotropy class. This class is called the generic isotropy class and its
elements are called generic isotropy groups.

If (G,,) and (G,,) are isotropy classes and some conjugate of G, is
properly contained in G, then (G,,) is said to be less than (G,) and we
write (G )< (G,.,). We consider this partial order restricted to the set of
closed isotropy classes. With respect to this order, there is a unique
absolute minimum closed isotropy class, the principal isotropy class, whose
elements are called principal isotropy groups. A closed orbit of X whose
isotropy class is principal is called a principal orbit. The union of the prin-
cipal orbits is an open, dense subset of the set of points lying on closed
orbits. In case the generic and principal isotropy groups coincide the
representation is called stable. A representation (V, G) is stable if and only
if V contains an open dense subset consisting entirely of closed orbits.

The closed isotropy classes of (X, G) give a stratification of X//G as
follows: If K is a closed isotropy group of (X, G), let X'® denote the union
of all orbits of type K and define X %> := X'®' ~ X% Now let (X//G)x,
denote the subset m; (X %) of X//G. Then

X//G = | (X//G)x), (1)

(K)

where the (disjoint) union is taken over all the closed isotropy classes, (K)
of (X, G). The fibres of n, , above (X//G) are all isomorphic to one

another.
The strata of X//G are related by (see [Sch3])

(X//G)(K)= u (V//G)(L)’

(L)=(K)

Furthermore, the natural morphism,

n: (X*V/(NgK) = (X//G) x
is the normalization [L2]. The fibres of the morphism X % — (X//G)x,
are isomorphic to (N, K)/K.

Suppose now that G is a semi-simple group. Then, by [LV],
dim X//G = dim X — dim(largest orbit in X). Hence,

dim X//G =dim ¥V —dim G + dim H, (2)

where H is a generic isotropy group of (X, G).
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4.1. The Hilbert—Mumford Criterion

The null fibre or null cone, Z (V) :=n }(n, ,(0)) plays a pivotal role
in the study of representations. Since 7 - is a morphism there is a dense
subset U of V//G such that dim n | (u) =dim ¥ —dim V//G for all ue U,
and there are no fibres with smaller dimension [Kr, AL.3.37]. Conversely,
there are no fibres of n. , having dimension greater than that of Z (V)
[Kr, 11.4.27]. Therefore (V,G) is equidimensional if and only if the
following equation is satisfied:

dim ¥ —dim Z (V) = dim V//G. (3)

A one parameter subgroup (1-PSG) 4 of G is a morphism of algebraic
groups 4: C* — G. If there is a one parameter subgroup A such that

lim A(f) v=w (classical topology)
t—0

then, clearly, f(v)= f(w) for all fe C[V]°. Since the invariants separate
closed G-stable sets, this implies that G-vSn, ' (n, - (w)). The converse
of this result is known as the Hilbert—Mumford Criterion. The Hilbert—
Mumford Criterion states that we Gv if and only if there exists a 4 with
lim, ., A(t)-ve Gw. This amazing result allows us to study the null cone
without having to use the algebra of invariants.

For each one parameter subgroup A, we define the set Z;(V):=
{veV|lim, 4 A()-v=0}. We may conjugate A so that its image lies in a
fixed maximal torus 7 of G. Then the Hilbert-Mumford criterion asserts
that Z,(V) is the union of the sets G- Z,(V) as 4 varies through all one
parameter subgroups of 7. By considering the T-weight space decom-
position of ¥ we see that there are only finitely many sets Z,(V) and thus
we may write Z(V)=U/_,G-Z, (V). If V" =V*") then 4 is said to be
generic. Clearly we may assume that each of the 4,. .., 4, is generic.

There is a maximal subgroup P, of G which preserves Z (V). P; is
parabolic and contains the parabolic subgroup P(4) defined by Mumford
in [MumF ]. Therefore,

dim G- Z,(V)<dim Z,(V)+dim G —dim P, (4)
<dim Z,(V)+dim G —dim B, (5)

where B is a Borel subgroup of G.
Schwarz [Sch2, Prop. 2.10] shows that if V' is a self-dual representation

and 4 is generic then dim Z (V)= 3(dim ¥ —dim V") and hence for self-
dual representations

dim Z, (V)< Y(dim V + dim G —rk G —dim V7). (6)
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Now let 2 and ¥ be the Lie algebras of P, and G, respectively. Write
% =2@U,, where %, is the subalgebra of ¥ spanned by the roots not
contained in #,. Let U, be the connected subgroup of G whose Lie algebra
is %,. Then [Sch2, Section 2]

Uo+Z,(V
dim G- Z,(V)=dim Z,(V)+ sup dim o+ ZV) (7)
e Zib) Z,(V)

This allows us to compute the dimension of the null cone using only
/15 - A, and the actions of %, , ..., %, . For many representations, especially
when G is simple, r is small enough and the actions simple enough to make
this computation practical.

ExaMPLE 4.1.1. We use this method to compute the dimension of
Z (V) for (V,G)=(pC"@®qC"", SL(n)) for some small values of p and ¢
which we will need. If p + ¢ <n— 2 then (V, G) is equidimensional and then
all the fibres of the quotient map have the same dimension, pn+ gn — pg.
If (V,G)=(pC"@®qC",SL(n)) and p > g, then

0, if g=0and p<n;
p—n+1, if g=0andpzn;
codim Zg, (V)= < pq, if 1<g<p<nanda<li; (8)

2
pq—{a——’, if I<g<p<nandaz0,
where a:=p+g—n.

EXAMPLE 4.1.2. We may also compute codim Z (V) for the representa-
tions (¥, G)=(pC*,SP(2r)) by considering one parameter subgroups.
Here we find

p(p—1)/2, if p<r+1;

r(2p —r—1)/2, if pzr+1. ©)

codim Zsm,)(pCz’)={

ExaMmpLE 4.1.3. If (V, G)=(pC™, SO(m)) then

p(p+1)/2, if p<r;

10
r(2p—r+1)/2, if p>r, (10)

codim Zgg,,,,(pC™) = {

where r:=[(m+ 1)/27.

The following two examples illustrate how to use one parameter
subgroups to determine equidimensionality.
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ExampLE 4.14. Take (V,G)= (2C*® C*, SP(4)xSL(4)). Then dim V//G
zdim ¥V —dim G =32 —-25=7 Now consider 4:C* — {¢} xSL(4) c
SP(4) x SL(4) with weights 1, 1, 1, and —3 in C* Then dim Z,(V)=24.
Set P:=(P,nSL(4)), U:=U,nSL(4), and % :=the Lic algebra of U.
Then dim P=12. For almost all vectors, v, in Z,(V) we have
dim((%v+ Z;(V))/Z,(V))=3. Hence dim G-Z (V)=dim SL(4)-Z (V)=
24 + 3 =27. Hence codim Z (V) <5 <7=dim V//G, and thus (V, G) is not
equidimensional.

ExaMmpLE 4.1.5. Consider (V, G) = (C*® a(7) @ C*, SP(4) x Spin(7))
and (V', G)= (V@ C’, G). Computing the invariants (or more easily, using
the slice theorem of Luna described below) we find that dim V//G =5 and
dim V'//G =12. Then the inequality (6) shows that (V, G) is equidimen-
sional. Moreover, this shows that there is a 1-PSG 4 and an element
ve Z,(V) such that dim((#,v+ Z (V))/Z,(V))=dim %, =13. Now using
the same 4 and v we obtain codim - G- Z,(V')=codim, G- Z,(V)+4=9.
Hence (V', ) is not equidimensional.

4.2 The Slice Theorem of Luna

Now we give a brief description of the Luna Slice Theorem. This descrip-
tion is tailored to our needs and is not the most general version of the
Luna Slice Theorem. Proofs of the results we state may be found in [Kr].

Let G, be a closed isotropy group of the representation (V, G). Then the
slice representation at v or the slice representation of G, is the representa-
tion of G, on S=.7_V/7(Gv). Since Gv=G/G,, T.(Gv)=7,G/TAG,.)=
Ad(G)/Ad(G,). Also 7,V =V and thus we may compute (S, G,) using the
formula

(S®AJ(G), G, )=(VDAL(G,), G,).

The slice representation (S, G,) inherits many of the properties of the
original representation (V, G). For example, the generic and principal
isotropy groups of (S, G,) are generic and principal isotropy groups of
(V, G), respectively. Also, dim S//G,=dim V//G. If G is semi-simple, then
it is not true, in general, that G, is also. However, Eq. (2) does hold for
the slice representation (S, G,). Furthermore, if (V, G) is cofree (resp.
coregular, equidimensional) then (S, G,) is cofree (resp. coregular, equi-
dimensional).

If (S, K) is a slice representation of (¥, G) then the fibres of 7, ,- above
(V//G)x, are all isomorphic to the twisted product, G, Z,(S). In
particular, their dimension is dim G — dim K + dim Z(S).

Since dim V//G =dim S//G, the Luna slice theorem is often applied one
or more times to determine dim V//G. In addition, it is often the easiest
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way to prove that a representation is or is not equidimensional or
coregular as is illustrated by the following example.

ExaMPLE 4.2.1. Let (V,G)=(C"® C"®S*C""' @ C”, SO(m) x SL(m)).
The subrepresentation (C™® C™, SO(m) x SL(m)) has principal isotropy
group SO(m) embedded diagonally in SO(m) x SL(m). The associated slice
representation of V is (S)C"@C"®0,,SO(m)) which is neither equi-
dimensional [Sch2] nor coregular [Schil]. Therefore, (V, G) is also neither
equidimensional nor coregular.

4.3. Estimate

Recall that dim V//G =dim V' —dim G + dim H, where H is a generic
isotropy group of (V, G). Thus dim V//G = dim ¥ —dim G. Hence in order
to show that a representation (V, G) is not equidimensional it suffices to
show that dim Z;(V)>dim G.

4.4. Comparison

The action of 1-PSG’s on the representations W, :=(S2C", SL(n)) and
W, :=(A>C"@®C", SL(n)) are closely related. Let A be a 1-PSG of SL(n)
with weights a,, .., a, on C". Then the i weights of W, are a,+a; for
I<i<j<n and 2a; for 1 <i<n The i weights of W, are a,+a; for
I1<i<j<n and a;, for 1<i<n Hence dim Z,(W,)=dim Z,(W,).
Moreover if we denote by U* the unipotent group not preserving Z,(W,)
then U}2U?: Hence dimSL(n)-Z,(W,)=dimSL(n)-Z,(W,). Now
consider (V,, G) :=(C"®C"® W,, SO(m) xSL(n)), where n<m. Using
the Luna slice theorem we find that dim V,//G=n+ 1. Furthermore, we
were able to show that V| was equidimensional. Hence every 1-PSG 4
of G satisfies dim G-Z;(V,)=n+ 1. By the above it then follows that
dimG-Z,(V,)=n+1 and therefore ¥V, is also an equidimensional
representation.

Remark 44.1. Note that (A2C*® C*@SC? SL(4)xSL(3)) fails to
be equidimensional while (A2C*® C>*@® A2C*@ C% SL(4) xSL(3)) =
(C°RC’PC @™ (6), Spin(6) x SL(3)) is cofree.

4.5. Finite Covering Groups

In order to simplify many of the computations we take advantage of the
following result: Suppose that (V, G) and (V, G') are representations with
G°=(G')° and (V, G°) = (V, (G")°). Then (V, G) is equidimensional if and
only if (V, G’) is equidimensional. In particular this allows us to pass from
(V, G) to (V, G°). Note, however, that it is not true that (¥, G) is coregular
if and only if (V, G') is. See Examples 4.6.6, 4.6.7, 4.10.2, and 4.13.1 for
examples of how useful this method can be.
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4.6. Ladders

LEMMA 4.6.1. Let V be a representation of the group G, where G decom-
poses as G=G,xG,. Set X=V//G,. Then

(1Y (V, G) is coregular < (X, G,) is coregular.

(2) If both (V,G,) and (X, G,) are equidimensional then (V,G) is
equidimensional.

(3) If (X,G,) is not equidimensional then (V, G) is not equidimen-
sional.

The proof of this lemma is easy and is left to the reader.

DerFINITION.  We call the sequence: V, V//G,, V//G a ladder or a ladder
of (V, G).

In order to understand the G,-variety X = V//G |, recall that X is defined
to be the variety whose coordinate ring is C[ V' ]“". Thus we must under-
stand how the G -invariant functions in C[ V'] transform under the action
of G,. Descriptions of how various invariants transform may be found in

[Schl, Sch3].

ExaMPLE 4.6.2. Here we give a simple example showing the structure of
V//G, as a G,representation. Take (V,G)=(C"® C", SL{n)xSL(n)).
Then (V, SL(n));(nEj, SL(n)). Hence C[V]S_':m=C[f], where f is the
determinant f: V=nC"—>C. Now if we consider f as a function on
(V,SL(n))=nC" we see that again f is the determinant. Thus f is an

invariant of both groups and so (V//SL(n), SL(n))=#,.

Remark 4.6.3. Note that in the above example, since (V//SL{n), SL{n))
is a one dimensional representation of the semi-simple group SL(#), it can
only be the irreducible trivial representation.

ExaMPLE 4.6.4. Here we give a (slightly) more complicated example
illustrating the G,-representation V//G,. Let (V, G)= (C"® C", SO(m) x
SL(#n)), where m > n. By classical invariant theory the SO(m) invariants of
V' are generated by the ("3') inner products among the n copies of C™.
Viewing these inner products as functions on mC” we see that they
transform under the action of SL(#) as the representation (S°C", SL(#n)).

ExaMPLE 4.6.5. Next we show how to use a ladder to determine
whether a representation is coregular and/or equidimensional. Take
(V,G)=(C"®C"@®A>C"” @C™ SO(m) x SL(n)), where m>n+ 1. Then
X=V/SOm=S'C"®N*C"@®C"@®0,. Hence (X, SL(n)) and thus also
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(V, G) is neither coregular nor equidimensional if # is odd. If n is even then
X and hence also V is coregular [Sch2]. If m>2n—1 and »n is even then
both (¥, SO(m)) and (X, SL(n)) are cofree [Sch2] and thus (V, G) is also
cofree.

EXAMPLE 4.6.6. Here we give an example where replacing the group
with a finite extension makes the computations easier. If (V, G)=(C"®
C" @ C™, 80(m) xSO(m)), then (V,SO(m)) is not coregular. However,
(V,O(m)) is coregular and (V//O(m), SO(m))= (S*C™@® C™, SO(m)) is
not equidimensional [Sch2]. Hence (¥, G) is not equidimensional.

ExaMPLE 4.6.7. If (V,G)=(C"RC"*'@N’C"*'@C"*"", SO(n) x
SL(n + 1)) then both (¥, SL(n)) and (V, SO(n)) fail to be coregular. While
(V, O(n}) is also not coregular, Y :=V//O(n) is the hypersurface in W=
S}C"TT@ AT C"T @ C" ! given by V//O(n)={(w, v, x) e W|rank w <n}.
Hence it is the hypersurface in W cut out by the discriminant
f:82C"*!' -+ C. Now (W,SL(n+ 1)) is coregular and we may choose a
minimal generating set {fq, f, . fy4} for CLW]S"*D with f,=71.
Then C[Y]S"*+ Y =C[/f,, .., f,.1]. Hence (Y, SL(n + 1)) is coregular but
this does not imply that (V, G) is coregular since we replaced SO(n) by
O(n). To prove the coregularity of (V, G) we shall need the method
described in Section 4.13. However, Zg, , ., ,(Y) is the subvariety of Y cut
out by the functions f, f5,.., fus1. Thus Zg (V) =Zg . (W)
and dim Y — dim Y//SL(n + 1) = dim W — dim W//SL(n + 1). Therefore,
(Y, SL(n+ 1)) is equidimensional if and only if (W, SL(n+ 1)) is. In par-
ticular Y, and hence V, is not equidimensional if # is odd [Sch2].

Often (V, G,) fails to be coregular. In this case we often had to compute
the generators of C[ V'] rather than using the tables in [Sch!]. Classical
invariant theory or the methods of [Sch4] or [Sch5] were sufficient for
many representations. The following example illustrates the methods of
[Sch5] as well as some useful other results.

ExampLE 4.6.8. Take (W, G):=(C'"°®C®@® o *(10), Spin(10) x SL(6)),
Vii=W®C* and V,:=W®2C®. Then neither (V,, Spin(10)) nor
(Vs, SL(6)) is coregular for b=1,2. The method described at the end
of Section 4.8 would allow us to study V, but it is of no use for V,.
Instead we apply the methods of [Sch5]. A set of generators for
C[5C" @0 *(10)]57!9 is given in [Sch1]. We may polarize these gener-
ators to obtain 33 invariants f}, f;, .., f3; which are part of a minimal
generating set for C[ W]5P(!%) For the definition of polarization we refer
the reader to [W, Chap. 1]. We need to determine if some new types of
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generators other than these 33 occur in C[W]SP"!'9 a5 a result of the
additional copy of C'°.

Suppose that fis such a new generator. By [Sch5, Theorem 1.22] if we
restrict / to (say the last) two copies of C'” in W it must then transform
as a highest weight vector for the representation A’ C'°. Hence, f restricted
to 4C'°@ ¢ *(10) must transform under the action of Spin{10) as a highest
weight vector of A? C'"" = A\? C'°. Therefore we are reduced to finding the
relevant copies of A?C'" in C[4C'°@c*(10)]. A subrepresentation of
C[ V] is relevant if it does not lie in C[V]9 -C[V]<=C[V].

Since (4C'°@ o *(10), Spin(10)) is cofree we may use Proposition 2.1.1
or [Schl, Prop. 46] to compute that C[4C'°@¢*(10)] contains 18
relevant copies of A®C'C. Using the methods described in [Li2]
we may explicitly identify these 18 copies and show that the corresponding
18 generators, f, all lie in C[f,, fos . f33}. Thus C[W]3rir0 =
C[fl’ fz, Rad] f33]'

Now the free SL(6)-module spanned by f;, f,, .., f4; is isomorphic to
X :=S’C*@® C*@® C*". Using the Luna slice theorem we may compute that
Y := W//Spin(10) is a 31 dimensional variety. By [ P2, p. 519, Remark ] this
implies that Y is a complete intersection, i.e., Y is cut out of X by two func-
tions, 4, and h,, which must then be SL{6)-invariants. Hence, Y@ bC*" is
an equidimensional SL(6)-variety if and only if X@® AC®” is an equidimen-
sional SL(6)-representation and this last condition is fulfilled precisely
when b < 1. In particular V, is not equidimensional. Furthermore, we may
now apply the method of strata described in the next section to see that V|
is equidimensional.

To prove that ¥, is coregular we need to show that Y@ C®" is coregular.
This is equivalent to showing that {k, &,} is part of a minimal generating
set for C[X®C® 1%"®). Since A,, h,e C[X]® we see that (V,, G) is
coregular if and only if {4, h,} is part of a minimal generating set for
C{X]%“® Hence, V, is coregular if and only if X is coregular if and only
if (W, G) is coregular. Finally the fact that (W, G) is coregular is an easy
consequence of the method of castling described in Section 4.8. Note that
the above argument also proves that (V,, G) is coregular.

Sometimes neither the techniques of classical invariant theory nor the
methods of [Schl, Sch5] were not sufficient to compute the generators of
C[V]“ and we had to resort to the following two lemmas:

LEMMA 4.69 [Schl, Lemma 3.13). Suppose that (V,, G) is stable and
that there exists f € C[V,]¢ which generates the ideal in C[V % vanishing
on the non-principal orbits. Let H be a principal isotropy group of (V,, G)
and set N: =N H. Then for any representation (W, G) the restriction
mapping induces an isomorphism, C[V, @ W1{=C[V{® W1];.
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LeMMA 4.6.10 (Compare [Sch3, 15.11]). Let B be a finitely generated
algebra over C which is a domain and let A be the subalgebra generated by
the non-zero elements f,, .., f,,,. Suppose that A,=B,, A,=B8B,,
dim B=d, and that (f,, f>) is a partial regular sequence in A. Then A= B.

Proof. Clearly dim A =dim A4, = dim B, =d. Therefore, either A is the
algebra of a hypersurface or A4 is a regular ring. In either case A is Cohen—
Macaulay [Ma, Section 16]. Thus f, and f, must be relatively prime in
A since they form a regular sequence in 4. Let beB and write
b=a,/f | =ay/f}, where a,,a,€ A and i, je N. Then f/ a, = f}a, and hence
[ divides a, in A. Therefore he 4. ||

An example of a representation where we made use of these lemmas is
(V,GY=(a(7)® C*@® C’, Spin(7) x SL(4)). To apply the method of ladders
we need to compute the SL(4)-variety V//Spin(7). We use the previous
two lemmas to show that this variety is a hypersurface, Y in
V' =(SIC*® N> C* @05, SL(4)). We do this by taking ¥, to be one copy
of ¢(7) and f; the corresponding invariant inner product. Then H = G, and
N2 G,xZ/2Z. Then calculating the restriction of C[Y] to V¥ ® W we
prove the isomorphism C[V{@® W]} =C[Y],. Thus by Lemma 4.6.9 we
have C[¥]7P""' = C[Y],,. Choosing f, to be the inner product in any one
of the other three copies of a(7) we see that the identical argument shows
that C['V]f»:"i“”’;C[Y],-:. Therefore applying Lemma 4.6.10 we see that
C[V]3" T ~C[Y].

4.7. Strata

Here we use the method of [Lil, Sect. 2.7] to refine the ideas of the
previous section. This gives us a method for computing dim Z (V') exactly,
when X :=V//G, is an equidimensional G,-variety. We consider the
stratification of V//G, indexed by the closed isotropy classes of (V, G,).
Restricting this stratification we obtain a partitioning

Zs(X)=| | (Za (X)X (k)

(K)

which, via ng, ,- induces a partitioning of the null cone of V. Adding the
dimension of the fibres above X, to dim(Z,,(X)n X «,) we obtain the
dimension of the subset in our partition which corresponds to (K).

If X is a closed isotropy group of (¥, G,) and (S, K) is the associated
slice representation, then the fibres of ng, , above (V//G (), are all
isomorphic to G, *, Z.(S). Therefore, if we define Dy :=dim Z,,(X) N
(X)x) and Fyg:=dim G, *x Zx(S)=dim G, —dim K +dim Z4(S), then

dim Z,(V)=max (D + Fy), (11)
(K)

481/154/2-13
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where the maximum is taken over all closed isotropy classes of (V, G,).
(We define the dimension of the empty set to be — o).

Next we show that we need only consider those closed isotropy
classes whose associated slice representations are not equidimensional. If
(S, K) is equidimensional, then dim Z,(S)=dim S —dim S//K=dim S —
dim V//G, =dim V + dim K —dim G, —dim V//G,. Thus F;=dim V-
dim V//G,. Since we are assuming that (V//G,, G,) is equidimensional,
D, <dim V//G,—dim V//G. Hence D + F,<dim V —dim V//G. There-
fore, in using Eq. (11) to determine whether or not (V, G) is equidimen-
sional, we need only consider those closed isotropy classes whose
associated slice representation is not equidimensional.

To apply this method we need to determine all the closed isotropy
classes of (V, G ). This can usually be done by using [Schl, Lemma 3.8].

Computing the values of F, is usually the simpler half of this method
since only the (usually simple) group K is involved. In [Sch2] many
techniques for calculating dim Z (V') when K is simple are given. The most
important of these is the method of one parameter subgroups described
above.

To compute D, we make use of the G,-equivariant (finite) normalization
morphism

n: (VK)//(N(;IK) = (V//G)) k)

From this morphism we see that D < Dy :=dim Z; ((V*)//(N¢, K)).

Since (V//G )k = |_|(_,4,>(K_)(V//Gl)(u, we have D, <Dy for all
(L) = (K). Therefore, if D, < D for all (L)> (K), then D= D,.

Note however, that it not necessary to compute the values D, ; knowing
the numbers D is sufficient. If Dy + Fy < dim Z (V) for all closed isotropy
classes (K) then D, + F, < dim Z (V) for all (K) and hence (V, G) is equi-
dimensional. Conversely suppose there exists a closed isotopy class (K)
with Dy + Fy>dim Z (V). Since Dy=dim Z,((V//G,)x,), we see from
the decomposition of (V//G,)k, into strata that there is some closed
isotopy class (L)= (K) with D, =D,. But (L)=(K) implies F, = F,.
Therefore, D, + F, = Dy + F,>dim Z,(V) and thus (V, G) is not equi-
dimensional.

Exampie 4.7.1. Let (V,G)=(C*® C*@®S*C? SP(4)xSL(2)). Then
X = V//SP(4) = A\?(2C*) @ S?C? = 28’C? @ 0,. The representation
(V, SP(4)) has three closed isotropy classes: (SP(4)), (SL(2)), and {e}. The
slice representation, (2C?, SL(2)), associated to SL(2) is cofree as is the
slice representation associated to {e}. Thus we need only consider the
stratum associated to (SP(4)). By Eq. (9), Fgpu =11 Now X gp4), =
{0} x S°C? and thus Dgp,, =dim Zg, ,,(S?C?). Since (§°C?, SL(2)) is equi-

2)
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dimensional we obtain Dgp,,=dim $°C* —dim S*’C%//SL(2)=3—-1=2.
Thus Dgp 4, + Fgpsy = 13. Since dim V' —dim V//G =19 — 5 = 14 we see that
(V, G) is equidimensional.

ExampLE 4.7.2. Take (V,G)=(C""*®@C"®((n—1)/2)C" ®2C"*?,
SP(n + 3) x SL(n)). Note that » is odd here. For this representation we will
need to consider the stratifications arising from the closed isotropy classes
of both (¥, SL(n)) and (V, SP(n+ 3)). Computing the values of D, here is
difficult for both stratifications. To compute these numbers for the former
stratification we study the subsets of the partition more closely and develop
an important method to bound the D,. However, this method fails for
K= {e} =SL(n). To bound D, + F,, we will need to consider the second
stratification.

First we consider the stratification of Zgp,, . ;,(V//SL(n)) by the closed
isotropy classes of (V, SL(n)). These closed isotropy classes are {e} and
SL(n—1) for 0<r<(n—1)2, where (C",SL(n—1))=C""'®80. We
set aside {e} for a while and consider the strata associated to be other
closed isotropy classes. For ease of notation we set F,:=F, ,_,, D,:=
Dgin_y» and D,:=Dg . _,. Using Example (4.1.1) we compute
that dim Zg, ,_ ,((n—1+3)C"@®((n—1)2—-0)C"") = (n—1)(n—1+3) +
[(n/2—1/2 —1—3)/27+err(t), where

6, if r=(n-1)2;
if t=(n-3)/2;
1, if t=(n-—35)2;
0, if r<(n-=7)/2.

err(t) =

Hence, F,<n” +3(n—1)+ ((n—1)/2—1=3)* +err(s).

To compute D, we take N,:= Ny, SL{n—1)/SL(n—1t)=GL(¢) and
W, =St 0=-C"3@C'@((n—1)2)C"@®2C"*3 Set Y,:=W,//N,.
Then we have an SP(n + 3)-equivariant finite map

n: Y. = (V//SL(n))spin— 1))

Since # is SP(n+ 3)-equivariant, n maps (Y}, to (V//SL(1n))sLin_ -
Thus we need to determine dim Zgg, , 5, (Y, )N (Y ).

Suppose that € Zgp, (Y (Y,),;, and take x=(4,yv)e
ny!w (&), where 4eC"**®C’, ye((n—1)/2)C" and ve2C"**. Since
¢e(Y,).,, we have GL(t), = {e}. This implies that the rank of 4 must
be ¢ and that if we write y={(y,, .., ¥, 1)2), then y,, .., y,, 1,2 span
a t-dimensional space. Consider ¥ :=rgp, .3, 4(x). We take advantage

0!’ the fact that mg ., °Rgppy 3y risLim = Tspin+ 3. ¥ ° TSLin). V//SP(n + 3)°
Since (€Zgp,,3(Y,), we have xeZg ) .spwmss(W,), and thus
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¥€Zg o \V//SP(n+3)). Since mgp,, s, 4, restricted to ((n—1/2)C"
is the identity and » has rank: this implies that ¥ = y. Therefore,
X€Zgpins y(C"TRC @2C" )@ ((n— 1)/2)C". Hence

dim nN,} H",(ZSPln + 3)( Y )n( Yr){e} )

(n—1)t

Sdim(Zsp',,+3)(C"+3®C'@2C”+3))+ 7

Using Eq. (9) we obtain the bound,

D,=dim Zgp, , (Y) N (Y,

n—1)
( )2

<dim(zsp("+3)(cr1+3®C/®2Cn+3))_+_ 2

Thus dim V — D, — F, > f(t), where

fiy =" ey LN

—1 1 -1 2
I t+12——<n —1—3) + err(?).

Applying the calculus we find that f(7) = dim V//G for all 0 <7< (n—1)/2.

All that remains now is to consider the stratum associated to {e}. Since
the slice representation associated to this class is equidimensional we would
be done if we knew that (V//SL(n), SP(n+3)) were equidimensional.
However, we see no easy method to show this. Thus the possibility remains
that the set U:={x=(4, y,v)eV|ng,, , (x)e(V//SL(n)) ., } nZs V)
has dimension greater than dim ¥ —dim V//G. To prove that this is not the
case we consider the stratification indexed by the closed isotropy classes of
(V,SP(n+3)). Let x=(A, y,v)eU. Then the rank of A4 is n and this
implies that mgp, ., ,(x) lies in one of the strata associated to
SP(n+3—~1¢), where t=n+3,n+1, n— 1, or n— 3. Now the slice represen-
tations, ((n+2—1)C"* 3/ SP(n+ 3 —1)), associated to the first three of
these strata are all cofree [Sch2], and (V//SP(n + 3), SL(n)) is also cofree.
Thus we need only consider the SP(6)-stratum. Using Eq. (9) we find that
Fspo)=dim V' —dim V//SP(n+3)+ 1 and hence it remains to show that
Un (V//SP(n+3))sp, has dimension less than dim Zg; , (V//SP{n + 3)).
But (V//SP(n+3))spe, has normalization {(v, y)|{ve A’ (C"@®0,),
ye((n—1)/2)C" and rank(v)<n—3}. Examining ZSL',,,(/\2 C'e2C"®
((n—1)/2)C") (by considering 1-PSG’s, for example) we easily obtain the
desired bound on dim U. Hence, (¥, G) is equidimensional.
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Remark 4.7.3. Note that we could have proven this representation was
cofree by considering only the second stratification discussed above.
However, we see no (easy) way to bound the values Dgp,,, 3 5,

For most representations to which we apply this method, the G,-variety
V//G, is coregular and thus it was sufficient to consider only the one
stratification.

4.8. Castling

In [KiS] Castling transformations are defined for representations of
the form (W® C”, Hx SL(n)). The relationship between the equidimen-
sionality of such a representation and its castling transform was determined
by Littelmann in [Lil, Lemma 2]. We begin by extending these ideas in
a straightforward way. Let (V, G)=(C"® W® p(H), SL(n) x H), where H
is semi-simple and set w :=dim W.

If w>n, then the castling transform of (V,G) is (V,G')=
(C"® W*® p(H),SL(n’) x H), where n’ =w —n.

PROPOSITION 4.8.1. Let (V,G)=(C"® W® p(H), SL(n)x H), where H
is semi-simple. Set w :=dim W.

(1) If w<n then (V,SL(n)) is coregular (resp. equidimensional) if and
only if (p(H), H) is coregular (resp. equidimensional).

Suppose that w>n and set (V',G)=(C"® W*@® p(H), SL(n') x H),
where n' = w —n. Further suppose (for (4) below) that n' = n. Then

(2) V/G=V'//G'. In particular, dim V//G =dim V'//G".

(3) The generic isotropy groups of (V. G) are isomorphic to the generic
isotropy groups of (V', G').

4) (V', G') is equidimensional if and only if both (V, G) is equidimen-
sional and dim V//G < dim p(H)//H+n+1.

The proof of this proposition is left to the reader.

Remark 4.8.2. There is an (in general outer) automorphism of H
which carries any representation (W, H) into (W*, H). Clearly this
automorphism preserves each of the properties of representations in which
we are interested. We will often take advantage of this automorphism
and replace (V',G’) by (C"® W@ p(H)*, SL(n') x H) without further
comment.

ExaMpPLE 4.8.3. Consider (V,, G)=(6(7)®@C*@ C’, Spin(7) x SL(6))
and (V,,G)=(V,®C’,G). The castling transform of (V,,G) is
(V,G)Y=(6(T1)®C*@®C’, Spin(7) xSL(2)) and that of (V,,G) is
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(V5. G)=(c(7)®@C*@2C7, Spin(7) x SL(2)). (Note that o(7) is a self-dual
representation.) Using the strata method we find that both (V, G') and
(V5,G') are cofree. Furthermore, dim V'\//G'=3 and dim V}//G'=7.
Therefore, (V,, G) is cofree while (V,, G) is not equidimensional.

Now we extend the notion of castling transforms further. Suppose that
(V,G)=(WRC"®rC",SL(n) x H), where r <n<w :=dim W. By classi-
cal invariant theory C[ V] is generated by a set of (*) decomposable
n-forms together with rw contractions. The first set of these generators
transform under the H-action as A’ . (W), the variety of decomposable

n-forms in A" (W). The second setpof generators transform as r copies
of W.

Setting n’ :=w —n we define the castling transform of (V, G) to be the
SL(n')x H subvariety, Y, of (Y, 6)=(C"wW*arw, SL(n')x H) cut
out by the rn’ contractions of W with W* Then C[Y]S"") has (V)
generators which transform as A% . (W*) and another rw generators
which transform as r copies of W.

THEOREM 4.8.4. Suppose (V,G)=(C'Q@ W@ rC"", SL(n)x H), where
r<n<w:=dim W. Set (7, G)=(C"QW*@®rW,SL(n')x H), where
n=w—n Let Y be the G'-subvariety of Y cut out by the rn’ H-invariant
contractions on Y of degree (1, 1) which together transform under SL(n') as
rC". Then V//SL(n)= Y//SL(n') as H-varieties.

Proof. First we prove the theorem for the case when r=1. In this case
we perform a chain of “ordinary” castling transformations to obtain the
result. First, ¥ has (V, G) :=(C"QW@C"®C" !,SL(n)x HxSL(n—1))
as castling transform. Now if we castle (¥, G) with respect to the SL(n)-
action we obtain (V, G):=(C* '@ W*®C" '®C" '",SL(w—1)x Hx
SL(n—1)). Next castling (¥, G) with respect to the SL{n — 1)-action gives
(V,G):=(C" '@ W*®C"®C" '"",SL(w—1)x HxSL(n')). Applying
classical invariant theory we see that ¥//SL(w —1)2 Y. Tracing through
this sequence we obtain the H-equivariant isomorphisms, Y//SL(n')=x
V//(SL(w—1) x SL(n')) = V//(SL(w—1) x SL(n—1)) = V//(SL(n) x
SL(n— 1)) = V//SL(n).

Now we consider general values for r. We use the theorem for r=1 to
prove the general case. Writing V=C"®@ W® C;';,@ - @®C? and

f=C"ow*ew,® - ®@W,, we define V, =C"® W@C(:’,‘; and
¥, :=C"®@ W*® W,,. We define Y, to be the subvariety of ¥, cut out
by the n’ contractions of degree (1, 1). Also set R:=C[V]*"") R, :=
C[V,1%"", S:=C[Y]®""" and S,;,:=C[Y,]5""". Now by the theorem
for the case r=1 there exist H-equivariant isomorphisms ¢.,: R, — S,
and Y, =¢,' 1 S, — R,y

By classical invariant theory R, is generated by (}) determinants
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together with w contractions. Let A; be the set of these generators. Apply-
ing classical invariant theory again we see that R is generated by
A:=J_, A,. Similarly if we let B, be a generating set for the relations
among the elements of 4, then B:=)]_, B; is a generating set for the
relations among the elements of 4. From this it follows that the ¢,,, taken
together define an H-equivariant ring homomorphism ¢: R — S.

Similarly, we may use classical invariant theory to see that the y
together give an H-equivariant ring homomorphism y:S — R. Clearly
Yy=¢ 'and thus R=S. |

As with the simpler form of castling we may extend this (continuing with
the same notation) to obtain (V@ p(H),SL(n)x H)Y and (Y@ p(H),
SL(n') x H) as castling transforms.

With these castling transforms it is clear that coregularity is preserved.
To determine how equidimensionality behaves under these castling trans-
formations we proceed as with the simpler castling transforms and so we
consider the SL(n) and SL(»') strata. However, now instead of having just
two of each of these strata we have r + 1 of each. Nevertheless the method
of considering strata does work and allows us to determine the equidimen-
sionality of V@ p(H) or Y@ p(H).

EXaMPLE 4.8.5. Take (V,G)=(C*°® C'°@®3C* @ a7 (10), SL(8)x
Spin(10)). We will show that (¥, G) is cofree. In order to bound the
dimension of Z (V) we consider the stratification induced by the closed
isotropy classes of (¥, SL(8)). There are five such classes: (SL(8)), (SL(7)),
(SL(6)), (SL(5)) and ({e}). We may compute that dim V' —Fg , —
Dy, 2 12 for 5<1<8. Since dim V//G = 12, as we shall see, it follows that
(V, G) is equidimensional if and only if X :=V//SL(8) is an equidimen-
sional Spin(10)-variety. In order to show this we consider the castling
transform of V. This castling transform, Y, is the subvariety of (Y, G') :=
(C2RC@®3C'"®o*(10), SL(2) x Spin(10)) cut out by the six Spin(10)-
invariants of degree (1, 1, 0).

Note that these six invariants are part of a minimal generating set
for C[SC'0]%n1% Since (5C'°, Spin(10)) is cofree these six functions
form a (partial) regular sequence in C[ Y] and thus dim ¥ =dim ¥ -
6 =60. Furthermore, (¥//Spin(10), SL(2))=S*C>*®4C>*®0,, and hence
(Y//Spin(10), SL(2))=8’C’® C*®0,,. Therefore, V//G = X//Spin(10) =
(Y//SL(2))//Spin(10) = ( Y//Spin(10))//SL(2) and thus (V, G) is coregular
with dim V//G = 12.

Considering the strata of ¥ induced by the Spin(10)-action we may show
that Y and hence X and also V are equidimensional. Note that for these
computations we may bound the values F, by observing that

ng'y(mcng'yn).
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4.9. Finite Principal Isotropy Groups (FPIG)

LEMMA 4.9.1. Suppose that G is reductive.

(1) If (V, G) has finite principal isotropy groups and (W, G) £ 0, then
(Ve W, Q) is not equidimensional.

(2) Suppose that G =G, x G,. Let W be an equidimensional represen-
tation of G, (where G, acts trivially). If (W, G ) has finite principal isotropy
groups then (V@® W, G) is equidimensional if and only if (V, G,) is equi-
dimensional and (V//G,, G,)=0.

The proof of this lemma is left to the reader.

Remark 49.2. 1If G is semi-simple then a representation (V, G) has
finite principal isotropy groups<>(V,G) has finite generic isotropy
groups <= dim V//G=dim V—dim G [LV].

ExaMmpPLE 4.9.3. Here we use castling to show that a representation has
finite principal isotropy groups and then apply FPIG to see that some
representations are not equidimensional.

Let (V,G)=(9(G)®@C*® ¢,(G,)® p(5), G, xSL(5)). Set (W, G)=
(0,(G)RC°® ¢,(G,), G, xSL(5)) = (V, G). (W, G) has castling trans-
form (W', G')=(¢,(G,)®C*®¢(G,), G, xSL(2)) which has trivial
principal isotropy group. Since castling preserves generic isotopy groups it
follows that (W, G) also has finite principal isotropy groups. Thus if
p(5) % 8 then (V, @) is not equidimensional.

4.10. Restriction

It is often possible to find a complex reductive algebraic group N and a
subspace W< V such that the restriction map res: C[V]¢ - C[W]" is an
isomorphism. If (W, N) is coregular then (V, G) is. Furthermore, if (W, N)
1s equidimensional, then so is (¥, G) by [Sch2, Lemma 2.5].

Classical invariant theory often suffices to show that the morphism res is
an isomorphism.

ExaMmpLE 4.10.1. Consider (V,G)= (~C7® C'®((n—1)2)C"®2C™,
SP(m) x SL(n)), where m = n + 3 and » is odd. By classical invariant theory
the invariants of (V, G) restrict to give the invariants of (W, N)=
(CFRC"®((n—1)2)C" @2C"*3 SP(n+3)xSL(n)). Now (W, N) is
the representation which we proved equidimensional in Example 4.7.2 thus
(V, G) is also equidimensional.

A general class of examples where res is an isomorphism is provided by
the Luna—Richardson theorem [LRi]: If A is a principal isotropy group
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of (V,G), N:=NyzH and W:=V" then res:C[V]°->C[W]" is an
isomorphism. While we can apply this method to our representation (¥, G)
it is often equally useful when applied only to (V, G,). If H is a principal
isotropy group of (¥, G,), and N:= N K, then res, C[V]® - C[V"]"
is an isomorphism. Hence res: C[V]¢=(C[V])* - (C[VH]V)¢ x>
C[V*]¥=% js also an isomorphism. Note that this result is of no use if
H={e}.

ExaMPLE 4.10.2. Let (V,G)=(C"RC"@®C", SO(m)xSP(n)), where
mz=n and consider (V,G)=(C"@C"®C", O(m)xSP(n)). Since
O(m—n) i1s a principal isotropy group of (V’, O(m)), we may pass
to (W, H)=(C'®C"®C", O(n) xSP(n)) which can be shown to be
equidimensional by applying the inequality (6). The representations
(C"®C"®C", SO(m) xSP(n)) for m<n (C"R®C"@®C", SO(m) x SP(n)),
(C"®C", SO(m)xS0(n)), and (C"®C"®aC” @ bC", SP(m) x SP(n)),
where ¢+ b =2 are all handled similarly.

4.11. L-Method

In this section we describe a method for showing that a representation
is coregular.

LEMMA 4.11.1 [Schl, Lemma 3.5]). Let G be a connected semi-simple
group and let (V, G) be a G-representation having a closed isotropy class (L)
such that dim VY//N(LY=d— 1, where d=dim V//G. Let res,: C[V]¢ -
C[VE]Ne'Y) be the restriction map. Suppose that p,, ps, .., P4 are elements
of C[V]1° such that the elements p,.=res (p;) form a minimal generating
set for res, (C[V]®). Since G is connected and semi-simple, the ideal
IV, L) in C[V]® vanishing on V* is principal and prime. Let f, be a
homogeneous generator of I(V, L). Suppose that the relations among the p;
are generated by f(p}, ... py). Then C[V]° is generated (perhaps non-mini-
mally) by {f,, P1, ., Pa} with a relation of the form f, -h(f,, pys .y Pa) =
f(py,s . pa) (where h may be zero).

ExaMPLE 4.11.2. We only required this method to handle a few
representations, including (V,, G) :=(C*®@C'@® A’ C’, SP(4) x SL(7))
and (V,, G):=(C*®@C’® A*C’, SP(4) x SL(7)). These two were the most
difficult of all the representations we considered. Both had a closed
isotropy group L of the desired form with L ~ C*. Moreover they both also
had a closed isotropy group M ~C* x C* with Lc M. For V, we were
able to show that res, (C[V,]°) is the subalgebra of C[ V' £]¥9" consisting
of those elements whose restriction to V5 is Ng(M)-invariant. For V, this
was not the case and we had to consider Hilbert series to determine
res, (C[V,]°).
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Having found, for each of the two cases, a set of five invariants whose
restrictions pf, .., p5 generate the ring, res,(C[V,]%), we needed to
show that /& is a non-zero constant in order to prove coregularity. To do
this we considered a slice representation. Both V, and V, have
(C*®0¢,(G,)®0,,SP(4)x G,) as a slice representation. Considering the
image of the p; in this slice representation we were able to show that for
both representations f has degree (24, «) for some a. Studying the algebras
res, (C[¥,]1“) we found that both f, have degree (24, b) for some b. Using
this we were able to prove (after showing that A was non-zero) that in both
cases e C* and hence that C[V,]“ and C{V,]“ are both regular rings.

The question of the equidimensionality of V, is discussed in Example
4.12.1.

4.12. Subdivision by Orbits

For some representations we used the method described in [Sch2, Exam-
ple 2.16]. A representation is visible if its null cone contains only finitely
many orbits. Suppose our representation (V=V,®V,, G) contains a
visible subrepresentation V. Write Z;(V,)=J_, G -w,. Then decompose
Z (V) into Zy(Vy=U);_,Z,;, where Z,:=Z (V) (G-w,®V,). Now let
H, denote the reductive part of the isotropy group G, . Restricting the
elements of C[V]¢ to ({w,}®V, =V, gives elements of C[V,]"
Suppose that (V,, H,) is equidimensional and that we can find a sequence
of a; elements of C[¥]“ which restrict to give a regular sequence in
C[V,]". Then writing b, :=codim, (G - w;) we obtain codim, (Z,(V))=
min{codim(Z) | 1<i<r}zmin{a,+b, | 1 <i<r}.

ExaMPLE 4.12.1. Let (V,G)=(C*®RC" @A C’, SP(4) x SL(7)), one of
the representations considered in Example 4.11.2. In that example we
showed that V is coregular by proving that C[V]°=C[p,, .., ps] for five
invariants p;. One of these invariants, p,, has degree (0,7) on V. In [G,
35.1-353], Zg (A’ CT)={xe A*C"| p,(x)=0} is shown to consist of
nine SL(7)-orbits: SL(7) - w,, ..., SL(7) - wy. Studying these nine orbits we
find that (keeping the ordering of [G]) ;=5 for all i/ except i=7 and
i=9. We obtain b, =4. However, the invariant p, of degree (4, 1) on V is
non-zero on C*® C’@®SL(7)-w, and thus a,> 1.

The orbit of w, is dense in Zg ;,(A*C’) and we must work harder to
bound this portion of the null cone. The reductive part of G, has identity
component H =SP(4)xSL{2) x SL(2). Restricting to the action of H on
C*®C’7x {w,} we obtain the representation W =C*'®@S°C’@C*®C’®
C?. We need to show that p,,.., ps restricts to a regular sequence in
C[ W]. We see no direct way to show this. However, (C*®S°C? H) is a
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visible representation and we may apply the method of subdivision to W
itself.

The method used in Example 4.11.2 gives a description of the five
invariants as they are described by classical invariant theory, that is, as
sums and products of various seven by seven determinants. This descrip-
tion expresses these invariants as long sums, some of which involve more
than 10* terms. However, the restrictions of the invariants to
C*®C’ x {wq} are significantly less complicated and we were able to use
a computer to express these restrictions explicitly as polynomials.

The restriction of p, to W is the invariant of degree (4,0) in C[W]"”
which cuts out ZH(C“®SZC2). Hence we further restrict ps, p4, and ps to
sets of the form W, := {v,} x C*® C*® C. Doing this we find that there
are only two orblts H v, which do not have b,>4. For the first of these
H -v, we again find that b, =3 and p; restricts to a non-zero function on
{v,} xC*® C?*® C*. Thus we have only one orbit to consider. This orbit
H v, is dense in Z,(C*®S?C?) and thus b,=1. Now we need to show
that the restrictions of p;, ps, and ps to {w,} xC*®C*®C’ form a
regular sequence. By considering the restriction of p;, p,, and ps to
{w,} x T for a carefully chosen subspace, T, of C*® C*® C? we were able
to show this. Hence codim Z (V) =codim Z,=5=dim V//G and thus
(V, G) is equidimensional.

Remark 4.12.2. It is not necessary that ¥, be visible to use this method.
It is clear that the method may be applied if, for example, all but finitely
many of the orbits G -w, in Z,(V,) satisfy b, >dim V//G.

4.13. Expanding

Here we describe a method which is especially useful for dealing with
representations that have S2C"" or A2C""' as subrepresentations. We
illustrate this method with two examples.

The first example illustrates many of the techniques of expanding
without being unduly complicated or long and so we include it, even
though it deals with a representation of SL(n) x SL(m).

ExampLE 4.13.1. Take (V,G) = (C"®C"® $*C" @ $7C", SL(m)
SL(n }), where m > n. Consider (Vl, N=(C"®C"eC"®C"® C"®C"
SL(m}xSL(n)xO(m)xO(n)) Note that the quotient of V, by O(m)x
O(n) is isomorphic to (V, G) and thus the coregularity of (V, G) would
follow from the coregularity of (V,, G,). By introducing the two new
groups we allow the possibility of castling to a representation which may
be easier to handle. Before we castle however we introduce an extra
wrinkle. We kill one of the generators of the invariants by using a slightly
different representation. This greatly simplifies the rest of the calculation.
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_Hence we define (V,,G,) := C"eCelt"eC" ' C' e C,
SL (m) x SL(n) x O(m — 1) x O(n)). If we quotient ¥, by O(m—1)x O(n)
we obtain the hypersurface in V defined by the discriminant, f,: $*C" — C.
Thus dim V,//G,=dim V//G—1 and C[C"® C"]3L-0" =0 —C[£,].
Write C[V,]“*=C[f,,... f,]. Then clearly C[f,, fi, .. /,1=C[V,]°
Now dim V//G,=dim V//G=n+ 1. Hence (V,,G,) is coregular if and
only if r=n if and only if (V,, G,) is coregular.

_Now castle to obtain (V3, G3) = (C" '®C"C'C" 'oC"®C,
SL(n— 1)xSL(n)x O(m — 1) x O(n)). The representation (¥}, SL(n)) is
coregular and quotienting ¥, by SL(n) we_obtain the representation
(W, K)=(C""'®@C" XY ed '®C"@w, SL(n—1)xO0(m—1)x0(n)),
where w is a one dimensional representation on which only O(n)/SO(n)
acts non-trivially. Now (W, O(m — 1) x O(n)) is again coregular and thus
we quotient W, by O(m—1)x0(n) to obtain (W,, K,)=(S*C" '@
S} '@w? SL(n—1)), where SL(n~1) acts trivially on the one
dimensional representation . Thus (W5, K,), and thus also both (V5, G5)
and (V,, G,), are coregular with quotient dimension # + 1.

ExampLE 4,132, Let (V,G) = (6(7) ® C"@® A*C”", Spin(7) x SL(n)),
where n is odd and »n>7. Both V//Spin(7) and V//SL(n) are extremely
complicated. To get around this difficulty we “expand” (V, G) to (V G) =
(6(7)®C"®C" '®C", Spm( ) x SL{( n)xSP(n— 1)). Then V//SP (n—1)
=~ V. Now we may castle (¥, G) to obtain (V',G')=(c(7)®C’®C"® C’,

N -~ ~
Spin(7) x SL(7) x SP(n ~1)). Then (¥7'//C", Spin(7)x SL(7)) = (¢(7)®
C'@® A2 C7, Spin(7) xSL(7)) =: (V’, G'). Now the principal isotropy group
of (a(7)® C’, Spin{7) x SL(7)) is a copy of G, and the corresponding slice
representation of V' is (¢ ,{G,)® ¢,(G,)@ 8, G,) which is neither
equidimensional nor coregular. Therefore (V, G) is not coregular. Also
(V',G’) and (¥, G) are not equidimensional. To prove that (¥, G) is not
N ~

equidimensional we consider the SP(n—1) stratification of V. This
stratification is indexed by the (n+41)/2 closed isotropy classes
N N -~
(SP(n—1)), .., (SP(2)), ({¢}). Computing we find that dim V- Dg,,, —
FGn,=28= d1m V//G for t=2 From this it follows that (V,G) is
equidimensional if and only if (¥, G) is and thus we are done.

4.14. Substrata

Sometimes it was necessary to further subdivide the Luna strata by using
the action of 1-PSG’s. The following example illustrates this method.

ExaMpPLE 4.14.1. Consider (W, H) :=(S?C",SL(n)), where n>3. Let
i, be a 1-PSG of SL(n) having weights a,,..,a, on C" where
la;] > -+ >1a,| >0 and a,<0 if and only if p+1<i<2p+ 1. Fix such a
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4, for each 1 <p<[(n—1)/27 Now let 4 be a generic 1-PSG of SL(n)
whose weights on C” are b,, ..., b,. Using the action of the Weyl group of
SL(r) we may permute these weights into any order. Thus we need only
consider those 4 whose weights satisfy |b,|> --- >1|b,|>0. But if we
examine the action of such a 1-PSG, 4, we find there exists a p such that
Z,(W)s Z, (W) (cf. [Sch2, Eq. 2.12]). Therefore, Z,(W)=\J, H-Z, (W).

Now consider (V,,G)=(C"®C”", SO(m)xSL(n)), where m>nz=3,
V,=8C" and V=V, ®V,. Observe that (V,//SO(m), SL(n))= (W, H)
and define X, :={v=(v;, ... 0,) €V, | gg(n, s, (v)€Z; (8’C")}. Then
Zi(Viy=U,(SL(n)-X,)=U, (U, X,), where U,, is the unipotent sub-
group of SL(xn) not preserving ZAF(SZC"). Hence we have Z (V)=
U, (U, (X,®Z, (V,))). We partition X, as the union X,={J?*; X,,,
where X, :={(v,,..,v,)e X, |dimspan{v,,,,.., vy ,,} =r}. Then con-
sidering the action of SO(m) we compute that dim X, , =mn—("}')—
(p+1—r)m—r)—(n—2p—1)r. Applying the calculus we find that
dim X,=dim X, ,,,=mn+3p’+3p—n—np. Now dim U, +dim X, +
dim Z, (V,)=dim V' — (n+1)=dim V' —dim V//G for all p. Hence (V, G)
is equidimensional.

Remark 4.14.2. If n=2 then the condition |a,| > |a,| is impossible.
However taking this into account, a slight modification of the proof in the
above example shows that (C" ® C*>@® S>C?, SO(m) x SL(2)) is equidimen-
sional.

5. THE CLASSIFICATION

In this section we outline the steps we used to obtain the classification.

Let G be a connected (and simply connected) complex algebraic semi-
simple group having two simple factors. Write G =G, x G,, where the G,
are the simple factors. It is possible to form representations of G using
representations of G, and G, which do not interact: (V,G)=
(VieV, G)=(V,,G,)®(V,, G,). For such representations, (V,G) is
equidimensional (resp. coregular) if and only if both (V, G,) and (V,, G,)
are equidimensional (resp. coregular). Thus in this case we are reduced to
considering representations of simple groups.

If (V, G) does not decompose into representations of simple groups then
(V,G) must contain an irreducible subrepresentation p(G,)® p'(G,),
where both (p(G,), G,) and (p'(G,), G,) are non-trivial irreducible
representations. We call such a representation, p(G,)® p'(G,) bi-simple.
We will classify the remaining equidimensional representations (V, G) by
considering their bi-simple subrepresentations. A list of all the bi-simple
equidimensional representations (up to castling transformation) may be
found in [Lil].
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The methods of Section 4 are sufficient to classify the equidimensional
representations of G, x G, when both factors are not isomorphic to SL(n)
for any n. These representations are listed in Tables I-IV. However, if
we suppose that, say, G,=SL(n) then any representation (W® C”",
G, xSL(n)) with dim W <n is cofree. Since, a priori, we know nothing
about the representation W other than this bound on its dimension we
require some extra results to classify those representations which contain
W® C" as a subrepresentation.

In [Lil1] all the equidimensional irreducible representations of the form
W® C”" are given (up to castling transformation). To this list we need to
add all the reducible representations of this form. We shall assume for the
rest of this section that G, is a special linear group and that G, is either
Spin(m) with m =5, SP(m) with m >4 or is one of the simple exceptional
groups.

LEMMA 5.0.1. Let G, be as above and let W a representation of G,. Set
wi=dim W.

(1) If 3w<dim G, then W is plain.

(2) If 2w<dim G, and W is non-plain then (W,G,) is one of
the representations: (o(7)@ 0, Spin(7}), (c(9)D 0, Spin(9)), (6*(10)D 6,
Spin(10)), or (a*(12)@ 6, Spin(12)).

(3) If W is an irreducible non-plain representation with w <13 (and
G, £SL(4)) then W= (a(7), Spin(7)) or W= (SC? SP(4)).

Proof. A list of all the (nontrivial) irreducible representations (W, H)
with w:=dim W< dim H+ 2 may be found in [Lil]. Examining this list
we arrive at the proof of the lemma. Note that (o*(8), Spin(8)) is plain
since (o *(8), Spin(8)) = (C* Spin(8)) by an -outer automorphism of
Spin(8).

The techniques of Section 4 suffice to classify all the equidimensional
plain representations (for G, =SL(n)). These representations are listed in
Tables VI-X.

Representations which contain spinor subrepresentations are especially
difficult to classify, principally because classical invariant theory does not
apply. Plain representations containing spinor subrepresentations are listed
separately from the other plain representations in Tables [X and X.

Most of the non-plain representations (V, G, xSL(n)) contain a sub-
representation W of the form W= W, ®C" with dim W=n+1. (Thus
(W,, G,) is the castling transform of W.) Tables XIV-XVI list all the non-
plain equidimensional representations having such a subrepresentation W.

We need the following lemmas to handle the non-plain representations.
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LEMMA 5.0.2. Suppose that (V,G)=(WQRC"@®p(G,), G, xSL(n)) is
equidimensional where W is reducible and G | is semi-simple. Set w :=dim W.

(1) If w<n then (V, G) is equidimensional (resp. coregular) if and
only if (p(G,), G\) is equidimensional (resp. coregular).

(2) Ifw=22nand n=7 then W is plain.

(3) If w=2n and 3<n<6 then either W is plain or (W, G,) is one
of (6*(12)® 8, Spin(12)), (c*(10)@ 0, Spin(10)), (o(9)@ 6, Spin(9)) or
(a(7)@ 6, Spin(7)).

4) If w=22n, n=2 and W is not plain then either (W,G,|)=
(C*@0c*(8),Spin(8)), (W,G,)=(C°@c*(6),Spin(6)) or W=W, @,
where W, is irreducible. Furthermore, in this case W is one of the following:
(¢3(6), SP(6)), (o*(12), Spin(12)), (a(11),Spin(11)), (s *(10), Spin(10)),
(6(9), Spin(9)), (o(7), Spin(7)) or (S?c*(6), Spin(6)) = (S2C*"', SL(4)).

(5) If n+l<w<2n and W is not plain then w<n+6 and
W=W,®0, where W, is one of the irreducible representations listed in (4)
above.

(6) Ifw=n+1 then dim W//G, < 2. Moreover, dim V//G =dim(W &
p(G,))//G, <dim p(G,)//G, +2<4.

Proof. (1) This is just part 1 of Proposition 4.8.1.

Recall that by Eq. (8), codim Zg . ((k + n)C") = k + 1. Hence
codim Z;(V)y<codim Zg, ,,(F)=w—n+1. Now dim V//G=dim V—
dim G=wn—n?>+1—dim G,. Since V is equidimensional this implies that
(w—n)n—1)<dim G,.

(2) If n=7 and 2n<w, this gives 3w <dim G, and so W must be
plain.

(3) Similarly if 3 << 6 then using the above inequality and Lemma
5.0.1 (and the tables in [Lil] for the case n=3) we find that either W is
plain or (W, G,) is one of the representations listed.

(4) From the tables of [Lil] we see that if n=2 then each
irreducible subrepresentation of W is one of the representations listed in
the statement.

Recalling that W is reducible and examining all the possible pairs we find
that if W is not plain then W= W, @ 0, where W, is one of the irreducible
representations listed above or (W, H) = (C® @ o *(8), Spin(8)) or (W, H) =
(C*@o*(6), Spin(6)).

(5} Suppose that (W@ C"®p(G,), G, xSL(n)} is equidimensional
and w<2n Then the castling transform (V', G)=(W*@C" ®p(G,),
G, xSL(n")) is also equidimensional and since n':=w—n<n we have
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2n’ <n'+n=w. Hence (V', G') satisfies the hypothesis for one of the cases
(2), (3), or (4) above. From this (5) follows.

(6) Here the castling transform (V', G')= (W*® p(G,), G,). Hence
by Proposition 4.8.1, (V, G) is equidimensional if and only if both (¥, G")
is cofree and dim V//G =dim V'//G, <dim p{(G,)//G,+2. In particular,
dim W*//G, <2.

LEMMA 5.0.3. Suppose that (V,G)=(WRC"®A>C", G, xSL(n)) is
equidimensional where n is odd. Set w :=dim W.

(1) If9sw<n+1 then Wis plain.

(2) Ifwsn+1 and w<8 then either W is plain or (W, G,)=(a(7),
Spin(7)}).

Proof. Consider (V',G')= (W ® C"® C" ' ® C", G, x SL(n) x
AN
SP(n—1)). Since V'//(SP(n—1))=V we have dim V//G=dim V'//G".
Castling (V’, G’') we obtain the representation (V”", G"})=(W®C” '®
- o A
C"'®C" ' G, xSL(w—1)xSP(n—1)). Set W' :=V"//(SP(n—1)) and
K=G xSL(w—1). Then W'//K=V//G. But dim W'//K>=dim W' —
dim K= {(w—1)(w—2)+w—dim G,. Combining this with the fact that
codim Z,(V)<codim Zg, , (V)=w we obtain w(w—3)+1<dimG,. If
w29 this gives 3w <dim G, which implies that W is plain. The proof of
the lemma then follows from this by Lemma 5.0.1.

Lemma 5.04. (1) Let (V,G)=(WQC"@®S*C™', G, xSL(n)), where
nz 5. If (V, G) is equidimensional then W is plain.
(2) Let (V,G)=(WRC"®AN*C""), where n is even and n>4. If
(V, G) is equidimensional then either W is plain or W= (a(7), Spin(7)).
(3) Let (V,G)=(WRC"®AN>C""), where n is odd and dim W < n.
If (V, G) is equidimensional then either W is plain or W= (a(7), Spin(7)).

Proof. (1) and (2) follow immediately by taking the slice representation
of the principal isotropy group of S2C""' or A2 C"" and comparing with
Tables I-1V.

For (3) we observe that V//SL(n)= A% (W)@0. Now (V, G) is equi-
dimensional implies that (A? (W), G,) is equidimensional (Lemma 4.6.1).
Hence we see by examining the tables in [Sch2] that either W is plain or
W=a(7).

LEMMA 5.0.5. Suppose that (V,G)=(WR®C"®sl(n), G, xSL(n)) is
equidimensional.
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(1) If n=8 then W is plain.
(2) If n=5 then either W is plain or W=0*(10)® 0 or W=0%(9)
or W=o(7)®0.

Proof. The slice representation at a principal isotropy group of
slin) is (V,GY®O, =(WRC", G, x(C*)" ')@0,_,. Here we have
dim V'//G'2wn—n+1—dim G,. Also codim Z; V' < 4(dim V''). Hence
n(w/2—1)+1<dim G,. If n>8 then we have 3w+ (w—7)<dim G, and
thus either 3w <dim G, or w<7. Hence W is plain.

(2) If n= 5 the above inequality gives 3w —4 < dim G,. Hence either
w<8 or 2w<dimG,.

LEMMA 5.0.6. Let (V,G)=(W,@C"®W,®C", G, xSL(n)), where
wy:=dim W, <n and w, :=dim W, <n. If (V,G) is equidimensional then
W,=0 and W, is plain or W, is plain and W,=8 or W, =W,=
(C4, SP(4)).

Proof. Since (V,SL(n)) is coregular, (V//SL(n), G )=(W, Q@ W,® 40,
G,) 1s equidimensional. From this the lemma follows.

Remark 50.7. If W, W,=(c*(6)® 6, Spin(6)) then V is considered as
a representation of SL(4) x SL(n) and so not treated here.

Finally we have the case V= W@ C"®bC" for b= 1.

LemMma 5.0.8. Suppose that (V,G)=(WRC"®bC"™, G, xSL(n)) is
-equidimensional where b= 2 and n = dim W.

(1) Then either W is plain or b< 3.

(2) If Wis not plain and b=3 then (W, G,)=(a(7)@ 8, Spin(7)).

(3) If W is not plain and b=2 then (W,G )= (c(2r+1)@8,
Spin(2r + 1)) with r<5, (W,G,)=(c*(2r)® 0, Spin(2r)) with r<6 or
(W, G,)=(g,(m)®D 6, SP(m)) with m<6.

Proof. 1If we quotient V by SL(n) we find that (W, G,) must be cofree.
Examining the tables of [Sch2] we see the only possibilities are the ones
listed in the lemma.

Lemmas 5.0.2-5.0.8 give some restrictions on those equidimensional
representations containing (W ® C”, G, x SL(n)). Given these restrictions
we may use the methods of Section 4 to classify the equidimensional non-
plain representations of this form. Representations of this form are listed in
Tables XI-XVI with those having such a W of dimension n— | appearing
in Tables XIV-XVL
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Representations having a bi-simple subrepresentation of the form
(W, ® W,, G, xSL(n)) with W, plain and W, non-plain are listed in Table
XVIIL Finally those representations containing a bi-simple subrepresenta-
tion of the form W, ® W,, where both W, and W, are non-plain are listed
in Table XVIII. Note that this only happens for n=2 and that both of
the equidimensional representations containing such a W, ® W, are
irreducible.

[A]
[AnVE]

[AnP]

[BoKr]

[B]
[Bo]

[DaK ]
[D1}]

[D2]
[E]
[G]
[H]
(HR]
[Hul]
[Hu2}
(K]
[KPV]
[Ke]
[KiS]

[Ko]
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