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INTRODUCTION

Let G be a complex reductive algebraic group and ¥V a finite dimensional
complex representation of G. We denote by O(V) the ring of regular
(=polynomial) functions on ¥ and by (V)¢ the subring of G-invariant
functions. Hilbert’s famous theorem states that ¢(¥)¢ is a finitely generated
C-algebra (see [Kr, IL3.2] or [MF]). The affine variety V/G with
coordinate ring O(¥) is called the quotient of V by G, and the morphism
n,: ¥V — V//G dual to the inclusion &(V')¢ G O(V') the quotient map. Similar
notations are used for an arbitrary affine G-variety X and its quotient
ny: X — X//G. The quotient map has a number of important properties: It
is surjective, separates disjoint G-stabie closed subvarieties, and is universal
with respect to morphisms which are constant on G-orbits (loc. cit.).

An important class of representations are the cofree representations V' of
G. This means that =, is flat, or equivalently, that ¢(V) is a free O(V)°-
module. These representations share many nice geometric properties with
the adjoint representation of G (cf. [Ko]). In particular, they are coregular
(i.e, €¢(V)° is a polynomial ring or equivalently, ¥V /G is smooth),
equidimensional (i.e., all fibers of n, have the same dimension, namely,
dim V—dim V/G), and the quotient map =#,:V—V/G is an open
morphism. Conversely, one can show that a coregular and equidimensional
representation V is cofree (see [Schl, Sch2]).

It has been conjectured by V. L. Popov that every equidimensional
representation of a connected reductive group G is cofree [ Po]. This is true
for simple groups G and for tori due to results of Schwarz and Wehlau
(cf. [Sch2, We]), and is also proved for irreducible representations of
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semisimple groups by Littelmann [Li]. Our results in this paper give
further indication that the Popov conjecture might be true in general.

For any representation V of a reductive group G define the zero fiber by
VO:=n;'(n(0)). It is clear already from the work of Hilbert that the
geometry of V' is strongly related to the structure of the quotient V /G and
the quotient map =, (see [Kr]). For example, it is easy to see that V' is
equidimensional if and only if dim V®=dim ¥ —dim V/G. In order to
compare a general fiber F=mn,'(z) with the zero fiber, we define the
associated cone of F by

%(F) := C*F\C*F,

where X denotes the Zariski-closure of a subset X<V and C* acts via
scalar multiplication on V. (This construction is introduced and discussed
in [BK], cf. [Kr, 11.4.27.)

If ¥V is cofree then for all ze V)/G, z#m,(0) the schemes V°® and
%(n;'(z)) are equal. In fact, the existence of a principal z with V%=
%(n, '(z)) as schemes implies that V¥ is cofree. For an equidimensional
representation we have the following theorem.

THEOREM. Let V be an equidimensional representation. Then for all
ze V)/G, z #n(0) the sets €(n~'(z)) and V° coincide.

Let V=V,®V, be a direct sum of representations. If V' is coregular
or cofree, then so are ¥, and ¥V, [Schl, Sch2]. A similar result holds for
equidimensional representations.

PrROPOSITION (Vinberg, Wehlau). If the direct sum V@ V, is equidimen-
sional then V| and V, are both equidimensional, too.

Recently, I learned that Vinberg has also proven the above theorem. In
fact, his proof works in a slightly more general situation.

1. AssociaTED CONES
Let X be an irreducible affine variety.

1.1. DeFINITION. X is called conical if the coordinate ring of X is
equipped with a positive graduation O(X)=@ < ,0(X); such that
@(X),=C. Equivalently, there is a C*-action on X with a unique fixed
point x, which is aftractive, i.e., lim, ,y7-x=x, for all xe X. The elements
of (X}, are called homogeneous of degree i.

Let X be conical. If f'e O(X) we can write f = fo+ f1 + --- + f,, where f;
is homogeneous of degree i and f,#0. We define gr(f) to be the
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homogeneous function f,. If # is any ideal of ¢(X) then gr(.#) denotes the
ideal generated by the set {gr(f)| fe £ }. Hence

gr(f)=@ {er(N)lfes and  deg(f)=g¢}.
qg=0
(By convention, the zero element 0 has every possible degree and gr0=0.)

1.2. DeFINITION (see [BK]). Let S< X be any subset and .#(S) € ¢(X)
the ideal of functions vanishing on S. We define the associated cone of S to
be the zero set of the ideal gr #(S):

€(S):={xeX|(grf)(x)=0for all fe#£(S)}.

We will also be interested in the structure of €(S) as a scheme. If we
begin with a (possibly radical) ideal .# the homogeneous ideal gr .# will not
in general be radical. Hence in general the scheme €(S) is non-reduced. If
we have a scheme S, the notation ((S) denotes the schematic ring of
regular functions. In particular, if . is the ideal defining the scheme Sc X
then C(%(S))=C(X)/gr #.

This construction has a number of important properties. We refer to
[BK, Sect. 3] for details (cf. [Kr, 1.6 and 11.4.2]).

1.3. PROPOSITION. Let S, T< X be closed subvarieties.

(a) dim ¥(S)=dim S.

(b) If S is irreducible then €(S) has pure dimension.

(c) €(SuT)=%(S)u¥E(T).

(d) m(C(S))y=m;(G(E6(S))) where m,(Y) is the multiplicity of the
irreducible representations of type 4 in the G-module Y.

(A variety has pure dimension if all irreducible components have the
same dimension. )

The following lemma shows how the operation gr behaves with respect
to radical ideals. (The proof is easy and left to the reader.)

14, LemMa.  If \/F = /T then Jor(#) = /gr(T).

Recall that a variety X is called Cohen—Macaulay if the coordinate ring
¢(X) is Cohen—Macaulay. We refer to [ Ma, Chap. 5 and 6] for the notion
of a system of parameters, a regular sequence, and a Cohen—Macaulay ring
and its properties (see also [St] and [HR]).
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1.5. PROPOSITION. Assume that X is Cohen-Macaulay, and let f,, ..., f,;
be a (partial) regular sequence of homogeneous elements of O(X). Define
p= 10 f): X—>C¥% and let a=(a,, .., a,) be any point in C* Then the
schemes €(p ~(a)) and p~(0) coincide.

Proof. Set F:=p~!(a). By definition, #(F)=(f, —ay, .., f,—a,). Since
fi=gr(fi—a,), we have #(p~'(0)) = (f}, .., fa) S gr F(F).

For the opposite inclusion observe that ¢(X) is a free C[f,, .., f,]-
module (since the f; form a regular sequence),

O(X)= @ CLfi,.» Sl s,

peB

where the 54 are homogeneous [St, Prop. 3.1]. Consider h=3%7_, g.(f;—a,) €
F(F). Then h=3¢_| Yp.pk, ps5(f;—a,), where k; se C[ fi, .., f,]. Setting
hg:=%¢ k. g(fi—a,) we have h=3;_phgsg, where the h, are in the
ideal of C[f},.., f;] generated by f,—a,,..f;—a, Now gr(h)=
Y pen gr(hg)s, for some subset B'<=B. But gr(hg) is a non-constant
homogeneous element of C[f,.. f;], and hence lies in the unique
homogeneous maximal ideal (f;,.., f;)-CLfi, .., f4]. Therefore gr(h)e
(f1s o f2)-OX)E F(p1(0)). B

2. CoNICAL QUOTIENTS

Let G be a connected reductive group. We assume that G acts
(algebraically) on the irreducible conical variety X, compatibly with the
C*-action. Then the quotient X/ G is also conical, and the quotient map
ny: X = X/G is C*-equivariant. In particular, the zero fiber X°:=
ny (my(xo)) is conical, too. We first give a geometric description of the
associated cone of a subset S of a general fiber of n, (see [BK, 3.4 Satz]).

2.1. LEMMA. Let Sc X be a closed subvariety contained in a fiber
n, '(y) different from the zero fiber X°. Then

€(S)=C*S\C*S=C*SnXx°
In particular, €(S)< X°, and €(S) is G-stable in case S is G-stable.

2.2. Recall that the quotient n,: X — X/G is equidimensional if all
components of all fibers of 7, have the same dimension. It follows from the
lemma above that this holds if and only if

dim X° =dim X — dim X//G.
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2.3. The quotient X/G contains an open dense subset U whose
elements are called principal points. A fibre n;'(z) for ze U is called a
principal fibre. If F, and F, are any two principal fibres of X then the
G-modules @(F,) and O(F,) are isomorphic (see [Lu, 111.4]).

2.4. PROPOSITION. The G-variety X is cofree if and only if there exists a
principal point z€ X |G, z # T x(x,), such that the schemes €(ny'(z)) and X°
are equal.

Proof. If X is cofree then there exists a regular sequence f, .., f, in
0(X) such that @(X)¢ is the polynomial ring C[f}, .., f4;]. Then n,=
(f1» . f4) and applying Proposition 1.5 we see that the schemes X° and
%(n x '(z)) coincide for all z.

To prove the opposite implication let K :=n,'(z) be a principal fibre
different from X° such that gr(#(K))=#(X°). Let Sc@(X) denote
a G-stable graded complement to #(X°). Consider the surjection
w:0(X)°® S — 0(X). We will prove that X is cofree by showing that y is
an isomorphism.

Let F be an arbitrary principal fibre and consider the restriction map
W S— O(F). Since S generates 0(X) as an @(X)%-module, we have that
W ¢ is a surjection. Now let W, = ker i - be an irreducible G-representation
of type A. The multiplicity of W, in S, m,(S) is finite ([Kr, II 3.2 Zusatz]).
But m,(S) = m,(C(X°)) = m(O(€(K))) = m(O(K)) = m,(O(F)), which
contradicts the fact that m,(ker ¢/ z) = 1. Hence ¢/ is injective and so Y is
an isomorphism.

Now let A=Y, fi®s,eker u where each f,e O(X)® and where we
assume the union of the s; is a linearly independent set. Then Y, f:s;€
F(X). In particular, Y; f;(F) s, #(F). Hence Y, f;(F) s;ekery .= {0}.
Since the s, are linearly independent, this means that f;(F)=0 Vi Since F
was an arbitrary principal fibre and since the union of the principal fibres
is dense in X, we have f,e #(X)° Vi and thus he #(X)°® S. Hence u is
injective and so y is an isomorphism. |

2.5. THEOREM. Let X be a normal conical equidimensional G-variety.
Then the sets €(n;'(z)) and X° are equal for all ze X /G, z # my(x,).

Proof. The quotient variety, X /G is normal since X is normal [Kr,
I1 3.3 Satz 1]). Hence, 7, is an open morphism since it is equidimensional
and dominant ([Bo, AG 18.4]). Therefore, the set U := TZX(X\C*TI;l(Z))
is open in X//G. Clearly z¢ U and therefore U does not meet C*z =
ny(C*ny'(z)). Hence, my(0) ¢ U, because n,(0) € C*z, and so X°c
C*n,.'(z). 1
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After 1 proved the following result, I learned that Vinberg had also
proven it. His proof works without the assumptions that X and Y be
conical and normal.

2.6. PROPOSITION. Let X be an irreducible normal conical G-variety and
Y < X a closed irreducible normal conical G-stable subvariety. Assume that
there exists a G-equivariant retraction p: X > Y, ply=idy. If ny: X > X/ G
is equidimensional, then so is my: Y= Y/G.

Proof. Let p: X//G —> Y//G denote the map induced by p. For every
ze Y/G< X//G we have ny'(z)cny!(z) 5> n,!(z), where the composi-
tion is the identity. Hence %(n;'(z))S%(ny'(z)) > ¥(n;'(z)). Thus
Y% = p(X°) = p(€(ny(z)) = €(ny'(p(z))), which shows that dim Y° <
dim Y —dim Y/ G. Therefore by Proposition 2.2 7, is equidimensional. |

2.7. The proposition applies in particular when the equidimensional
G-variety X is a product Y, x Y, of two G-varieties. Thus we obtain a proof
of the proposition of the Introduction.
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