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Recall that a cap in PG(n, 2) is simply a set of points with no three
collinear. A cap which intersected all codimension 2 subspaces would yield
an interesting example of a 2-block: 2-blocks have been much studied in
the literature.

An interesting folklore conjecture, which received considerable attention,
had it that in fact no cap is a 2-block. Although this conjecture can be
shown to be true for small dimensions, we show that is far from being the
case in general.
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Proposition. For any k�0 and sufficiently large n there exists a cap in
PG(n, 2) which intersects all subspaces of dimension n&k of PG(n, 2).

Proof. Let V be a vector space of dimension n+1 over the binary field
F2 . Choose a basis [e0 , e1 , ..., en] of V. Let C be a subset of the projective
space P(V ) such that C contains only points of the form (ei+ej) where
i{ j. Then C can be regarded as a graph 1 with vertex set [0, 1, ..., n] and
where the pair (i, j) is an edge whenever (ei+ej) # C. Note that C is a cap
if and only if if 1 is triangle free.

Suppose W is a subspace of P(V ) disjoint from C and of codimension k.
Then W is the intersection of k hyperplanes, W=H1 & H2 & } } } & Hk .
Colour the vertex i of 1 by the set [ j | (ei) # Hj], so that 1 is coloured
with (at most) 2k colours. If (i, j) is an edge of 1 then the point (ei+ej)
of C is not in W. Therefore, some hyperplane, Ht say, does not contain
(ei+ej) . It follows that not both of the points (ei) , (ej) are in Ht .
However, since every line intersects every hyperplane, we conclude that
exactly one of the two points (ei) , (ej) lies in Ht . But this means that the
vertices i and j have different colours. Therefore we have a proper colouring
of 1.

Now it is well-known, and has been proved by many people indepen-
dently (probably first by W.T. Tutte [T]), that there exist triangle-free
graphs with arbitrarily high chromatic number. Taking 1 to be a triangle-
free graph of chromatic number langer than 2k will produce a cap that
meets all projective (n&k)-spaces. K

This work is related to question on binary linear codes and families of
subsets which are symmetric-difference free. These connections will be
developed elsewhere.
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