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ABSTRACT. We prove a lemma which reduces much of the invariant theory
of torus representations to the theory of faithful stable torus representations
(Lemma 2). Using this reduction we obtain a structure theorem (Theorem 1) for
equidimensional representations of tori. This theorem shows that the weights of
an equidimensional torus representation are arranged in a very special manner
within the lattice of characters. Understanding this arrangement allows us to
prove that equidimensional representations of tori must be cofree (the Popov
conjecture for tori).

INTRODUCTION

Let G be a complex reductive algebraic group and ¥V a G-module. Denote
by C[V] the ring of polynomial functions on V. If {x,..., x,} is a basis
for V*, the dual of V', then C[V] is just the polynomial ring C[x,, ..., x,].
The action of G on ¥ induces an action of G on C[V] given by (g- f)(v) =
f(g~'v) for fe€C[V], g€ G,and v € V. The elements of C[F] which are
fixed by G form a subring, called the ring of G-invariants and denoted C[V]°.
The ring of invariants of a reductive group is finitely generated and so is the
coordinate ring of an affine variety. This variety is called the quotient of V' by
G and denoted by V/G. Dual to the inclusion of rings C[V'] — C[V] we
have a morphism of affine varieties, the quotient morphism, ny ¢:V — V/G.

We are interested in three properties of representations: coregularity, equidi-
mensionality, and cofreeness. If C[V]® is a regular ring then (V, G) is said
to be coregular. A representation (V, G) is called equidimensional if all the
fibres of my ¢ have the same dimension. If C[V] is a free C[V']°-module then
(V', G) is cofree. A representation is cofree if and only if it is both coregular
and equidimensional [11].

The Popov conjecture is that if G is connected then every equidimensional
representation of G is also cofree. We prove that the conjecture is valid if G
is a torus and give a complete description of the torus representations to which
it applies in terms of their weights.

Received by the editors April 12, 1990 and, in revised form, October 7, 1990.
1991 Mathematics Subject Classification. Primary 22E46; Secondary 20GO05.
Research supported in part by NSERC Grant OGP0041784.

©1992 American Mathematical Society
0002-9939/92 $1.00 + $.25 per page

839



840 D. L. WEHLAU

PRELIMINARIES

We begin with some standard results. Proofs for these results may be found
in [5]. Let G be a complex reductive algebraic group. We will use (V, G) to
denote a complex representation of G with representation space V.

The quotient morphism, ny ¢ : V — VG, gives a bijection between the
points of ¥ /G and the closed G-orbitsin V. Notice that if {f;, ..., f;} isa
generating set for C[V']°, then ny ¢ can be realized as ny ¢ = (fi, ..., fa):
V-Cio V)G where VG = Image of ny ¢ .

An important property of the invariants is that they suffice to separate closed
G-stable subsets of V. That is, if ¥} and V, are disjoint closed nonempty
G-stable subsets of V', then there exists v; € V] and v, € V3 with nty _g(v)) #
ny,g(v2) .

The N grading on C[V] by total polynomial degree is preserved by the action
of G. Hence C[V]C is also N-graded. From this it follows that (V, G) is
coregular if and only if C[V']¢ is a polynomial ring. Hence (V, G) is coregular
if and only if VG is affine space ce.

Next we derive an important characterization of equidimensionality. The
quotient, V'//G, always contains a dense open subset 4 such that dim n;fo(é )=
dimV —dim V)G V& € A. Moreover every component of every fibre of ny ¢
has dimension at least dim ¥ — dim V' /G . Conversely, it is well known that
dimV° > dimn}' (&) V¢ € V|G where V° := n;';(ny 6(0)), is the null
cone or null fibre. Therefore

(V, G) is equidimensional <= dimV°=dimV —-dim V)G
<~ dimV° <dimV -dim V)G .

In 1976, V. Kac, V. Popov, and E. Vinberg classified the coregular irreducible
representations of connected simple groups [4]. In [8], Popov observed that
these representations are precisely the cofree irreducible representations of con-
nected simple groups. This led Popov to make the conjecture that every equidi-
mensional representation of a connected semisimple group is also cofree.

There are many equidimensional representations of nonconnected semisim-
ple groups (for example finite groups) which are not coregular. However the
necessity of semisimpleness as a hypothesis in the conjecture is not so clear and
in 1980, V. Kac extended the Popov conjecture by conjecturing that for any
connected complex algebraic group whatsoever, every equidimensional repre-
sentation is cofree [3]. We know of no counterexamples to even this extended
version of the Popov conjecture.

G. Schwarz listed the coregular representations of connected simple groups
in 1978 [9]. That same year, Schwarz also listed the cofree representations of
connected simple groups [10]. These lists show that there are many reducible
coregular representations of connected simple groups which are not equidimen-
sional. In 1979, O. Adamovich and E. Golovina also classified the coregu-
lar representations of connected simple groups [2]. Using methods from his
two classifications, Schwarz verified the Popov conjecture for connected simple
groups (unpublished). Independently, Adamovich also verified the conjecture
for these groups [1].
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P. Littelmann listed, in 1987 (up to the equivalence relation known as
castling), for connected semisimple groups, the cofree, coregular, and equidi-
mensional representations which are irreducible [6]. These lists show that the
Popov conjecture is true for irreducible representations of connected semi-
simple groups.

The current author has listed the equidimensional representations of a large
class of the connected 2-simple groups [13]. Again this list verifies the conjecture
for these groups. :

The proofs that the conjecture is valid for these special cases all involve
explicitly listing all the relevant representations which are either coregular or
equidimensional. Once these classifications have been done it is seen that all
the equidimensional representations of the given type are also coregular. In
contrast to these other proofs we will give a direct proof that the conjecture is
valid for torus representations.

We still require one more definition and one important result. A represen-
tation (V, G) is stable if the union of the closed G-orbits in V' contains an
open dense subset of V.

One of the most important methods for determining whether an orbit is
closed is the

Hilbert-Mumford criterion. If y € G- x, then there exits a one parameter sub-
group . C* — G and an element g € G such that

liné At)-x=g-y (in the classical topology).

TORUS REPRESENTATIONS

Now we take G = T = (C*)" a torus of dimension r. Let X*(T) = Z’,
be the lattice of characters of 7. Given (V, T), a representation of T, we
may choose a basis {v;, ..., v,} of V consisting of weight vectors. Let v; be

the weight of v;. Let {xi, ..., x,} be the corresponding dual basis of V*.
Then each Xx; is a semiinvariant of weight u; := —v;. Moreover, there are
minimal generating sets for C[V']7 of the form {m,, ..., m;} where the m;

are (nonconstant) monomials in the x;. It is the existence of these minimal
generating sets consisting of monomials that makes the invariant theory of torus
representations accessible.

Whenever we have a torus representation (V, T), we will use v; to denote
elements of such a basis of T-weight vectors, x; to denote the corresponding
dual semiinvariants, and u; = —v; to denote the weight of x;. Furthermore,
whenever we choose generating sets {m,, ..., ms} for C[V']T, we will suppose
that the m; are (nonconstant) monomials in the x;.

A proof of the following lemma may be found in [12, §2.5].

Lemma 1. If T is a torus and X*(T) = M, & M,, then T = T, x T, where
Ti=Myem ker X, T2 =yepr, kerx, and X*(Ti) = M; for i=1,2.

Now we prove a lemma which allows us to reduce to stable faithful represen-
tations.

Lemma 2. Let (V,T) be a representation of a torus. Let {v,,...,v,} be
a basis for V and {m,, ..., ms} a generating set for C[V1T. Suppose that
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{v, ..., v} ={v; | 3] with x; dividing m;}, define V' := spanc{vy, ..., Vx}
and N :=spanc{Vi,y, ..., Un}. Set H :=ker(T — GL(V')) and T' .= T/H.
Then

cv ) =cvT.

C[N]T =C.

(V', T") is a faithful stable torus representation.

ny (V' +n)=ny @) forall v'eV', neN.

(V,T) is stable <— V =V".

(V, T) is cofree (respectively coregular, equidimensional )

< (V', T is cofree (respectively coregular, equidimensional).

Proof. Both (1) and (2) are clear.

For (3), (V', T') is faithful by definition of 7. To see that (V', T') 1is
stable let B := {v' = (v{,...,v};) € V'|vj#0fori=1,...,k}. Then B
is an open subset of V' and we will now show that all v’ € B lie on closed
T’-orbits. Let 1 :C* — T be a nonconstant one parameter subgroup. Suppose
x; has weight a; € X*(A(C*)) & Z. Since A is not constant and (V', T") is
faithful, there exists i such that «;, # 0. By hypothesis, there exists jo such
that x;, divides mj,. Since mj, has weight O there exists i, such that Xx;
divides mj,, a;, # 0, and «;, and «; have different sign. But then v;, # 0
and v; # 0 implies that

1
2
3
4
5
6

X ! 14 ! «@ ! @ ! «, !
%E%l(t)-v —%glg(ta‘vl, c s UL Y, 1Y)

does not exist. Hence by the Hilbert-Mumford criterion, 7 -v’' = T’ - v’ is
closed.

Since we have nty 7= (my, ..., ms): V = V[T, (4) is clear.

To prove (5) consider v’ € B . By the proof of (3), T-v' = T"-v’ is a closed
orbit in V', hence T - v’ is also closed in V. Now the invariants separate
closed orbits and thus 7 - (v’ +n) cannot be closed if n # 0. Therefore

{v'+n|v eBand0#ne N}

/!

consists only of nonclosed orbits.

To prove (6) we apply (1) to see that (¥, T) is coregular iff if (V', T7) is
coregular. By the proof of (5), ny'; (v r(v', n)) = ny! p(my m(v')) x N
and thus (V, T) is equidimensional if and only if (V', T”) is equidimen-
sional. O

Remark 1.
(V, T) is faithful <= spang{v, ..., v,} = X*(T)
< spang{ui, ..., pn} = X*(T).
Remark 2. We may write V' as a disjoint union of closed 7’-stable sets:
Vi= || T | ] (V\B).
v'EB
Since my: 1+ separates closed 7’-stable subseis, this decomposition shows that

ny! gy o (v')) = T'+v' Yo' € B. Now since (V', T") is faithful we see that
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dim 7T’ -v' =dim T’ Vv’ € B. Thus, almost all fibres of 7y 1~ have dimension
equal to dim 7”. Therefore dim V' )7’ =dim V' —dimT".

EQUIDIMENSIONAL REPRESENTATIONS

Theorem 1 (Structure theorem for equidimensional torus representations). If
(V, T) is a faithful, stable, equidimensional torus representation with dimV =
n and dAimT =r, then (V,T) = (Vi, T)® -+ &® (Vu—r, Tn—y) where V =
V- ®Voey, T=Tyx-xTu_r,and (V;, T}) is a faithful, stable, cofree
torus representation with dimV;|T; =1 for j=1,...,n—r. Moreover the
weights of each of the V; are arranged within X*(T;) = Z4™Vi=V in such a
manner that they are linearly dependent over N, but any dimV; — 1 of them
Sform a basis for X*(T;) @ Q.
Proof. Let {x1, ..., X,} beabasisof V* andlet {m;, ..., my; be aminimal
generating set for C[V']7. By Remark 2, dim VT =dimV —dimT =n—r.
We say that the set {x;,, ..., x;} satisfies property x if for all j with
1 < j <d thereexists a p with 1 < p < k such that x;, divides m;. Note

that
o=y U H(i, ..., i)
k {)c,-l ,...,x,-k}
satisfies »
where H(iy, ..., i) is the n — k dimensional T-stable subspace of V' de-
fined by H(iy, ..., 4) = {(v1,...,) €V |vy, =---=v;, =0}. Thus
codimV? = kg := min{k|3 {x;,, ..., x; } satisfying x}. Hence (V,T) is
equidimensional if and only if kg =dim V)T =n—r.
Now (V, T) is faithful implies that spanz{ui, ..., un} = X*(T) = Z'.
Reordering we may suppose that {i,_,.1, ... , Un} isa Q-basis for Z'®Q. Any

monomial m = x{!-----x{* € C[V]" givesarelation: a; p; +---+a;u;, =0 in
Z". Since {fn—rs1,-.., Un} is linearly independent, there can be no monomial
m € C[V]T involving only X,_,1,..., Xn. Equivalently, every monomial
m € C[V]T involves at least one of xi, ..., X,—,. Therefore, {x;, ..., Xp—r}
satisfies *.

Now (V, T) is equidimensional implies ko = n — r from which it follows
that no proper subset of {x;, ..., x,—,} satisfies property . This implies that
for all i with 1 <i < n—r,there exists a j such that x; divides m; .

Fix j < n —r and suppose that w,, ..., w, are precisely those m; in

which x; appears. If each of w;,...,w, is also divisible by at least one
of xi,...,%j,..., Xn—r, then {xg,..., Xj,...» Xn—r} would satisfy prop-
erty x. Hence at least one of w;, ..., w, is divisible by x; but not by any
of {x1,...,%,..., Xp—r}. Thus reordering the m; we may assume that Xx;
divides m; for 1 <i, j < n—r if and only if i = j. Therefore we may write:
— 1A=t i, n
mp =X X, r Xn
— a2, n—r+t a.n
my = X3 Xy ri1 x'”
— y8@n—r8n—r,n—r+l an—r,
mn_r — xnn_rfxnﬂ_rl;'-'i +o .. xn’l r,n

where a;,...,a,—,>1and g; ;>0 for 1<j<n-rand n+r—-1<i<n.
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This gives the following relations in X*(7T) = Z":

ai @i+ a1 n—rst *Mn—rit+ -+ A n M =0
ay Uy +ay n—rs1 * Un—rv1 + -+ Q2 n Un =0

An—r* Un—r + An—r,n—r+1 * Un—r+1 + -+ An—r,n*Un = 0
Define Li:={n—-r+1<i<n|a;; #0}u{j} for 1 <j<n-r. Then
ieLl; < x;dividesm; for 1 <i<n, 1<j<n-r.
Lemma3. If 1<u#v<n-r,then L,NL,=2.
Proof. Assume 1 <u#v<n—rand weL,NL,. Clearly n+r—-1<w<n.

Set H := spang{fn—ri1s---> Mdws---> Un}, a hyperplane in Z" ® Q. Then
m, yields the relation

(1) Ay Py + Ayw e oy =0 (mod H)

where a, > 1and a,,, > 1 since w € L,. Similarly, m, yields
(2) Ay Uy + Ay w* Uy =0 (mod H)

where a, > 1and a, > 1 since w € L, .

Now ko = n—r implies that {x;, ..., Xy, .--» Xp» --- » Xn—r, Xuw} does not
satisfy property . Thus there is a monomial m € {m,, ..., my} of the form
m=x,‘j-x$-x,’,”'_‘,fj1 ----- xP» with b, =0, a>0,and b > 0. Hence m
yields the relation
(3) a-U,+b-uy=0 (mod H)

where a > 0; b > 0. From Equation (1) we see that u, and u,, lie on opposite
sides of the hyperplane H . Similarly Equation (2) shows that u, and u, lie
on opposite sides of H. Hence u, and u, lie on the same side of H and

thus, in Equation (3), we must have a = b =0. Hence m = x,’,"'_',f}‘ ----- xbn
Therefore b,_,y1* ftn_rs1 + -+ bp-pn =0. But {#pn_ry1, ..., Un} is linearly
independent and thus b,_,;1 =---=b,=0. Thus m=1€ {my,..., my},

and this contradiction proves the lemma.

Set M; :=spanz{u; | i€ L;}. Since m; has weight zero, we have a relation
among the elements of {u; | i € L;}. Hence rank M; < #(L;) — 1. Since
(V, T) is faithful, we have X*(T) =spanz{f1,..., n} =M +---+M,_,.

Now

n—r
r =rank X*(T) =rank (M, +---+ M,_,) < Zranij
j=1
Z#(L )=n-(n-r)=r.
Hence rank M; =#(L;)—1 for j=1,...,n—r and X*(T) = M&---®M,_,.

Define
Vi:=spanc{v;|i€L;}and T := n kery .

XEM,
1#)

Then T=Ty x---x T,_, and X*(T;) = M; by Lemma 1.
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The monomial m; provides a linear relation over N among the weights of
V; . However, since x; divides m; for every i € L;, each weight of ¥ occurs
in this relation and thus any dim V; — 1 of them are linearly independent over
Q. Furthermore, (¥}, T;) is stable by Lemma 2 since m; € C[V;]%. Since
Tj, acts trivially on V},, if j; # j, and (V, T) is faithful, (¥}, T;) must be
faithful for all j. Thus dimV;/T; =dimV; —dim7; =dim Vj —rank M; = 1.
From this it easily follows that (¥}, T;) is equidimensional and coregular and
so cofree. O

Remark 3. The above theorem combined with Lemma 2 gives a complete de-
scription of equidimensional torus representations in terms of their weights.

THE POPOV CONJECTURE

Theorem 2 (The Popov conjecture for tori). Let (V, T) be an equidimensional
torus representation. Then (V, T) is cofree.

Proof. By Lemma 2 we may assume that (¥, T) is faithful and stable. Hence
Theorem 1 applies and (V, T) decomposes as (V,T) = (V;, T1)® -+ &
(Va=r, Tn—y) with each (Vj, T;) cofree. Therefore (V, T) is coregular and
equidimensional and so also cofree. O
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