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1. INTRODUCTION

The categorical product ~GG� ~HH of two directed graphs ~GG and ~HH is the directed

graph with vertex set Vð~GGÞ � Vð~HHÞ and arcs ððu1; u2Þ; ðv1; v2ÞÞ for all arcs

ðu1; v1Þ of ~GG and ðu2; v2Þ of ~HH. Undirected graphs can be viewed as directed

graphs with symmetric arcs hence the definition of the product extends readily.

Hedetniemi’s conjecture [4] states that the identity �ðG� HÞ ¼ minf�ðGÞ;
�ðHÞg holds for all undirected graphs G and H. It is known to hold when

minf�ðGÞ; �ðHÞg � 4 (see [2]) or when G and H belong to special classes of

graphs (see [7; 10] for recent surveys).

Proper colorings and chromatic numbers are usually defined for undirected

rather than directed graphs, but since the orientation of the edges does not affect

the constraints, we can just define the chromatic number of a directed graph as

that of the graph obtained by ignoring the orientation of its edges. However,

note that the orientation of the arcs of the factors determines the structure of a

product, and its chromatic number. Thus it is possible to extend the investigation

of chromatic numbers of products to directed graphs. In this respect, Poljak and

Rödl [6] were the first to note that the inequality �ð~GG� ~HHÞ � minf�ð~GGÞ; �ð~HHÞg
can be strict for directed graphs; examples already exist among tournaments, that

is, orientations of complete graphs. The same authors introduced the functions

f ðnÞ ¼ minf�ð~GG� ~HHÞ : ~GG and ~HH are n-chromatic directed graphsg;
gðnÞ ¼ minf�ðG� HÞ : G and H are n-chromatic undirected graphsg:

Thus, Hedetniemi’s conjecture states that gðnÞ ¼ n for all n. In general, we have

f ðnÞ � gðnÞ � n; it is known that gðnÞ ¼ n for n � 4 ([2]), f ðnÞ ¼ n for n � 3

and f ðnÞ < n for all n � 4 ([1, 6]).

Perhaps surprisingly, it is not even known whether f ðnÞ and gðnÞ grow without

bound with n. Poljak and Rödl showed that if f is bounded above, then the bound

is at most 4, and used this result to show that if g is bounded above, then the

bound is at most 16. In [5] (see also [10]), these bounds have been improved: if f is

bounded above, then the bound is 3, and if g is bounded above, then the bound is

at most 9. Thus, either we have f ðnÞ ¼ minf3; ng for all n, or limn!1 f ðnÞ ¼ 1.

Of course if f is unbounded, then g also unbounded. In this note, we prove the

converse:

Theorem 1. If f is bounded, then so is g.

It has been shown in [8] that for all � > 0, there exists n� such that for all

n � n� there exist n-tournaments Sn, Tn such that �ðSn � TnÞ � ðð2=3Þ þ �Þn
(thus limn!1 f ðnÞ=n � 2=3). In [1, 9], we find examples of directed graphs ~GGn,
~HHn such that �ð~GGnÞ ¼ n, �ð~HHnÞ ¼ 4, and �ð~GGn � ~HHnÞ ¼ 3. Thus the world of

directed graphs offers many examples of product graphs with interesting

chromatic properties. The world of undirected graphs offers some confirmations
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of Hedetniemi’s conjecture, and through their proofs, intriguing links with the

topological aspects of graph coloring (see [2; 7; 10]). Theorem 1 above shows that

these two facets of product graph coloring are linked together. The remainder of

the paper is devoted to its proof.

2. PROOF OF THEOREM 1

Let Kn denote the complete graph on n vertices. For a directed graph ~GG,

the exponential digraph K
~GG
n is the directed graph whose vertices are all functions

from the vertex set of ~GG to that of Kn, where two functions f ; g are joined by an

arc if f ðuÞ 6¼ gðvÞ for every arc ðu; vÞ of ~GG. For any directed graph ~HH, there is a

natural correspondence between the proper n-colorings of ~GG� ~HH and the arc-

preserving maps from ~HH to K
~GG
n : If c : ~GG� ~HH 7! Kn is a proper coloring, then the

map �c : ~HH 7! K
~GG
n defined by �cðvÞ ¼ fv, where fvðuÞ ¼ cðu; vÞ is arc-preserving.

Conversely, if � : ~HH 7! K
~GG
n is arc-preserving, then c� : ~GG� ~HH 7! Kn defined

by c�ðu; vÞ ¼ fvðuÞ, where fv ¼ �ðvÞ is a proper coloring. Thus we have

�ð~GG� ~HHÞ � n if and only if there exists an arc-preserving map from ~HH to K
~GG
n .

In particular, if �ð~HHÞ > �ðK~GG
n Þ, then �ð~GG� ~HHÞ > n. These and other properties

of exponential digraphs are discussed in [2; 3; 7; 10].

Suppose that the function f is bounded. Then by the results of [5; 10], we have

f ðnÞ � 3 for all n. Let f~GGk; ~HHkgk�4 be a sequence of pairs of directed graphs

such that �ð~GGkÞ ¼ �ð~HHkÞ ¼ k and �ð~GGk � ~HHkÞ ¼ 3. We construct a sequence

fAn;Bngn�10 of pairs of graphs such that �ðAnÞ ¼ �ðBnÞ ¼ n and �ðAn � BnÞ � 9

as follows.

For a fixed n � 10, put

m ¼ maxf�ðK~GGn

n�1Þ; �ðK
~HHn

n�1Þg þ 1:

Then �ð~GGmÞ > �ðK~GGn

n�1Þ whence �ð~GGn � ~GGmÞ ¼ n. Let An be the graph obtained

by ignoring the orientation of the arcs of ~GGn � ~GGm. Similarly, for the directed

graph ~HH�
m obtained from ~HHm by reversing the orientation of the arcs, we have

�ð~HH�
m Þ > �ðK~HHn

n�1Þ whence �ð~HHn � ~HH�
m Þ ¼ n. Let Bn be the graph obtained by

ignoring the orientation of the arcs of ~HHn � ~HH�
m .

Fact. �ðAn � BnÞ � 9.

Proof of Fact. Let cn : ~GGn � ~HHn 7! f0; 1; 2g and cm : ~GGm � ~HHm 7! f0; 1; 2g
be proper 3-colorings of ~GGn � ~HHn and ~GGm � ~HHm, respectively. Consider the

function ĉc : An � Bn 7! f0; 1; 2g � f0; 1; 2g defined by ĉcððu; vÞ; ðw; xÞÞ ¼
ðcnðu;wÞ; cmðv; xÞÞ; we will show that ĉc is a proper coloring of An � Bn.

Let ½ððu; vÞ; ðw; xÞÞ; ððu0; v0Þ; ðw0; x0ÞÞ� be an edge of An � Bn. Then ½ðu; vÞ;
ðu0; v0Þ� is an edge of An and ½ðw; xÞ; ðw0; x0Þ� is an edge of Bn. By symmetry, we

can suppose that ððu; vÞ; ðu0; v0ÞÞ is an arc of ~GGn � ~GGm and we need to consider

two possibilities:
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(i) If ððw; xÞ; ðw0; x0ÞÞ is an arc of ~HHn � ~HH�
m , then ðw;w0Þ is an arc of ~HHn, so

that ððu;wÞ; ðu0;w0ÞÞ is an arc of ~GGn � ~HHn, whence cnðu;wÞ 6¼ cnðu0;w0Þ.
(ii) Otherwise ððw0; x0Þ; ðw; xÞÞ is an arc of ~HHn � ~HH�

m , thus ðx0; xÞ is an arc of
~HH�
m , so that ðx; x0Þ is an arc of ~HHm and ððv; xÞ; ðv0; x0ÞÞ is an arc of ~GGm � ~HHm,

whence cmðv; xÞ 6¼ cmðv0; x0Þ.
So in either case, we have ĉcððu; vÞ; ðw; xÞÞ 6¼ ĉcððu0; v0Þ; ðw0; x0ÞÞ. This shows

that ĉc is a proper vertex coloring of An � Bn using the nine colors in

f0; 1; 2g � f0; 1; 2g. This concludes the proof of the fact.

Thus, fAn;Bngn�10 is a sequence of pairs of graphs such that �ðAnÞ ¼
�ðBnÞ ¼ n and �ðAn � BnÞ � 9, which shows that gðnÞ � 9 for all n. This

concludes the proof of Theorem 1. &
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