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Abstract. Using partitionings of quadrics we give a geometric construction of certain symmetric group divisible
designs. Itis shown that some of them at least are self-dual. The designs that we construct here relate to interesting
work — some of it very recent— by D. Jungnickel and by E. Moorhouse. In this paper we also give a short proof of
an old result of G. Pellegrino concerning the maximum size of a cayi4, 3) and its structure. Semi-biplanes

make their appearance as part of our construction in the three dimensional case.
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Forn > 2, we denote byPG(n, q) the finite projective space of dimensienover
F := GF(q), thefield of order,. Similarly AG(n, ¢) denotes the affine space of dimension
n overF'. A subset ofPG(n, q) or AG(n, q) is acapif no three of its points are collinear.
Forl < k < n, asubsefX C PG(n,q) is ak-flatif K is isomorphic toPG(k,q). A
lineis a 1-flat, gplaneis a 2-flat and &olid is a3-flat. The complement i®G(n, ¢) of an
(n—1)-flatis isomorphic tedG(n, ¢). We will denote by/(x, y) the unigue line containing
bothx andy.

We begin by recalling the structure of maximal caps in low dimensions. Proofs of these
results may be found in [6] and [7]. A conie in PG(2,q) consists ofy + 1 points no
three of which are collinear. A line d?G(2, ¢) meets a conicin 0, 1 or 2 points. The lines
which meef? in 2 points are calledecantlines; those that med? in a single point are
calledtangentsand the lines which misQ are calledexteriorlines. For each point €
there exists a unique line tangenttoat p. There are(¢? + ¢)/2 secant lines t@) and
(¢*> — q)/2 exterior lines. Ifq is odd then every maximum cap iG(2, q) is a conic. Ifg
is even then the + 1 tangents td? are all concurrent. Their common point is called the
nucleusof €. Every line through the nucleud, is a tangent line t6). Forg even every
maximum cap containg+ 2 points. As above, one way to realize such a maximum cap is
to take a conic together with its nucleus.

A maximum cap inPG (3, ¢) with ¢ # 2 consists of;? + 1 points. (A maximum cap in
PG(3,2) contains 8 points.) Such a setg@f+ 1 points is called amvoid If ¢ is odd or
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q = 4 then every ovoid is an elliptic quadric. Conversely an elliptic quadric is an ovoid
forall q. If £ C PG(3,q) is an ovoid then at each point 8fthere exists a unique tangent
plane. Other than thegg + 1 tangent planes, each of the remainifig? + 1) planes in
PG(3,q) meets€ in ¢ + 1 points which form a cap. I£ is an ovoid ang ¢ £ then there
are exactlyy + 1 tangent planes t6 which pass througp. If £ is any ovoid inPG(3, q)
and/ is a line containing no points & then/ is in exactly 2 tangent planes &f each of
the remaining; — 1 planes througlf meets€ in ¢ + 1 points.

To construct a maximum cap IAG(3, q) whereq > 2 we begin with an ovoid C
PG(3,q). Choose any point € £ and letll, be the unique tangent planedat z. Then
E\{z}isamaximum cap imlG(3, ¢). We call such a cappunctured ovoidvith puncture
pointz. If £is an elliptic quadric we also use the tepomctured elliptic quadriéor £\ {z}.

1. The Three Dimensional Case
1.1. The Construction

Let ¢ be a prime power and pil,, := PG(2,q). Choose a coni€) C II,,. Embed
Il C PG(3,q) and choos&” € PG(3,q) \ Il. Then we define the following two sets:

C=c(V,Q):=Juv,z) and C:=C\(QU{V}).

zeQ

Since|Q| = ¢+ 1, we havelC| = q(¢ +1) +1 = ¢> + ¢+ 1 and|C| = ¢* — 1.

We define two structure® (resp.?) having points and blocks as follows. The points
of P (resp.P) are just the points of’ (resp.C). Forz € Q we denote by, the unique
tangent line at to 2 in II.. Now there arey + 1 planesll., Il q,...,II, ;1 through
.. Reordering these planes we may arrangethatII. .

The blocks ofP are defined to be the intersectioBs ; := 1I.; N C for z € 2 and
i =0...,9 — 1. In addition,2 = II, N C is also declared to be a block &f. Thus
P hasq(qg+ 1) +1 = ¢?> +q+ 1 = |P| blocks. We note that, by definition, the lines
UV, z) =11, 0N C for z € Q are each blocks dP.

The blocks of P are defined to be the intersectioBs; := II., N C for z € Q and
i=1...,q— 1. It follows that, unlikeP, none of the blocks o are the intersections of
P with lines of PG(3, ¢). Also P hasg? — 1 blocks as well ag? — 1 points.

THEOREM 1 If ¢ is even therP is the Desarguesian projective plane.

Proof: If V ¢ 11, ; thenB, ; andQ} are in perspective frorir, as are their nuclei. Then
the nucleus\ of B, ; is the point of intersection of the pladg, ; with the linef(V, N)
whereN is the nucleus of). Since/, is tangent td?, N € £, which in turn is contained in
I1, ;. Thusthe lin€(V, N) and the plan&l, ; meet exactly inV and thereforé/ = N. In
particular, all of the blocks oP, other than the + 1 lines{(V, z), are conics which share
the same nucleusy. Note also that all the planés,, andIl, ; containN. Moreover each
one of theg® + ¢ + 1 planes onV is somell, ; or is L.
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We now show that no two points;, z, of P are collinear withV. This is clear unless
z1 ¢ Qandzs ¢ Q. In that case ley be the intersection of(x1, z2) with II,. The
pointsz) := £(V,z1) NIy, x4 := €(V, z9) NI, andy are three collinear points if..
Sincez} andz), are in{2, andQ2 has no three of its points collinear, it follows thatt .
Moreovery # N, sincey is on a secant line t. Hence no two points gP are collinear
with N.

We have now that the blocks &f are the intersections with' of the planes ilPG(3, q)
throughN. The intersection of any two such planes is a line throdgh Since|C| =
¢%> +q¢+1, and no two points of” are collinear withV, it follows that each of thg? + ¢+ 1
lines throughN meetsC' in exactly one point. Consequentl®, can be thought of as the
quotient geometry alV which is PG(2, q). (For a definition of quotient geometry see [2,
page 25]). ]

Recall (see [8]) that a semi-symmetric design is a connected incidence structure of points
and blocks with constant block size and replication number and such that any pair of points
(resp. blocks) lies on exactly 0 atblocks (resp. points). When= 2 we geta semi-biplane.

THEOREM 2 Letq be odd. TherP is not connected but rather has two connected com-
ponents. Each of these components is a semi-biplarig®on 1) /2 points.

Outline of proof: We use arguments similar to those in the proof of the previous theorem
with the following important difference: for a conic withodd each point not on the conic

lies either on exactly 2 or 0 tangents to that conic. The connectedness properties follow
from a coordinate calculation. ]

2. The Four Dimensional Case: A Symmetric Group Divisible Design

Note. In the rest of this paper for the sake of brevity alone we will assumeythag.

We proceed to construct certain symmetric group divisible designs. A symmetric (some-
times called square) group divisible design has an equal number of points and blocks.
Recall (see [1]) that a group divisible design is an incidence structure with the following
two properties:

(a) All blocks have the same size,

(b) Thev = nm points are partitioned into: point clases, each of points (the groups).
Any two points from distinct groups are joined by exagily> 0 blocks whereas points in
the same group are not joined by any block.

These group divisible designs have been of considerable importance in design theory
(see [1]). See also the interesting survey paper [10]. Note that in the symmetric or square
case there are various consequences. For example, the relation of being disjoint is an
equivalence relation on the blocks and any two disjoint blocks meet precisely the same
groups. For further details see [9].

Let £ be an ovoid contained i/, = PG(3,q). For eachz € &£ let II, denote the
unique plane inH,, which is tangent t&€ at z. EmbedH,, into PG(4, q) and choose
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V € PG(4,q)\H. Theconeort,isthesetofpoint€’ = C(V, &) = pLng £(V,p). Define
S=8(V,&):=C(V,E)\ (EU{V}). Sincel€| = ¢*> +1,we have S| = (¢—1)(¢*> +1).
We construct a symmetric group divisible desi§ron the points of5, as follows.

The groups oD are the set&', := ¢(V, z) \ {z, V} for z € £. Thus each group contains
q — 1 points.

Now for eachz € &, there are; + 1 solidsHoo, H, o, ..., H, 4—1 In PG(4,q) which
containlI,. Since the union of these+ 1 solids is all of PG(4, ¢), by reordering thed,, ;
we may assume thdf € H, . ThenH,o NS = 4(V,z) \ {V, z} is the groupG,. The
setsB,; == H,;NSforl <i<qg—1andz € £ are the blocks oD. Thus there are
(g —1)(¢*> + 1) = |S| blocks ofD.

LemMA 1 IfZisalineinPG(3, q) and/ contains more than 2 points 6fU& then3z € £
such that! = £(z, V).

Proof: Suppose that,, x2, 23 are three distinct points iffUE)NL. Fori = 1,2, 3 denote
by z; the point of intersection of(z;, V') with H.,. Thenz, z; andzs are collinear points
of £. Since every line off ., meet<t in at most 2 pointg{z1, 22, 23 }| < 2. Without loss of
generality,zl = Z9. Thereforeé(V, 1‘1) = f(‘/, 21) = f(‘/, 22) = f(‘/, .132) = 6(331, 1‘2) =
L. [ ]

PRrROPOSITION 1 1) Each block oD contains exactly? points ofD.

2) Each point ofD is contained in exactly? different blocks oD.

3) If 21, x5 are not contained in any one group then there are exagtly1 blocks ofD
which contain both:; and .

4) If z1 # zp then|B,, ; N B,, ;| =g+ 1forall 4, j.

Proof: 1) Note thatB, ; U {z} is in perspective fron¥” with £. Therefore for each € £
andalll <i <gq -1, B, is a punctured ovoid with puncture poinand|B, ;| = ¢*.

2) Fix a pointz € D and letz’ € £ be the point of intersection &{V, =) with IT,. For
eachz € £ with z # 2/, there exists a unique solid. ; .,y which containdI, andz. Then
x € B, ;). Hencer lies in ¢? different blocks.

3) Suppose1, z2 € D do not lie in the same group (i.e:;, z2 andV are not collinear).
The linel(z1,x2) meetsH ., at some point’. By Lemmalz’ ¢ £. In H,, there argj+1
tangent planes t6, 11, ..., II. ., throughz’. For each;, there exists a uniquie= i(j)
suchthate; € H., ;. Finally zy € £(x1,2") C H., ;. Also by the definition of the blocks
it is clear that no other block contains bathandzs.

4) Note that inH ., the two tangent plands,, andIl,, intersect in a lin€ which does
not intersect. All of the other planes throughin H,, containg + 1 points of£. LetII be
the plane of intersection of the two solids,, ; andH, ;. We have thail D ¢. Projectll
to H,, from V to get the planél’. SinceH,, ; does not contaift’, II' # II,,. Similarly,
II' # I1,,. Thereforell’ contains exactly; + 1 points of£. Joining these points t&
and intersecting witlI gives thatB., ; and B, ; have exactly; + 1 points in common.

]

As in [1] a correlation of an incidence structure with itself is a bijectiérbetween the
points and the blocks and satisfyipge B < 6(B) € 6(p) for all pointsp and blocks
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B. If 6 has order 2 this correlation is callegpalarity. Note that if6 is a polarity and),

is any other correlation then their product is a collineation (automorphism of the incidence
structure) and therefor@, is expressible as a product of a collineation times the given
polarity 6.

THEOREM 3 If £ is a quadric therD is self-dual.

Proof: We will give a proof using homogeneous coordinates?a(4, ¢). We will write
(zo : @1 : xo : w3 : x4) for the homogeneous coordinates of a point and we denote by
[ap : a1 : ag : a3 : a4 the hyperplane oPG (4, q), [ap : a1 : a2 : ag : a4] := {(zg : @1 :
Zo 1 x3: xg) € PG(4,q) | apxo + a1z1 + asza + azzs + agxy = 0}. We may assume
thatH,, =[0:0:0:0:1]andthat =(0:0:0:0:1).

If ¢ is odd then by [6, Theorem 5.1.6], we may assume &hatthe set of points i,
which satisfy the equation? + 27 + 23 + vz3 wherev is some non-zero element 6f.
Thusé = {(zo : @1 : x3 : w3 : 0) | 23 + 2% + 23 + va? = 0}. If ¢ is even then by [6,
Theorem 5.1.7] we may assume tlas the set of points i/, which satisfy the equation
vxd + zom1 + 23 + 2273 fOor somer £ 0. We will give the proof of Theorem 3 far odd.

Working in Hy, letz = (2o : 21 : 22 : 2z3) € £. Then the tangent plane &at z is the
planell, = [zo : 21 : 22 : vz3]. Returning toPG(4,q), letp = (po : p1 : p2 : p3 : A)
be any point ofS U £. Recall thatH,, has equatiorr, = 0. It follows thatz = (po :
p1: p2 : p3 2 0)ison&. Moreover the solidsjpy : p1 : p2 : vps : A for A € F, are
the ¢ solids other tharf ., which containll,. We want to construct a mapwhich gives
a duality of D. Definef(p) to be the sefpg : p1 : p2 : vp3 : A] N S. (Forq even take
O(p) :==[p1 : po : p3 : p2 : AJNS.) Thusé(p) is a block (resp. a group) @ if p € S
(resp.p € &).

Let B = [ap : a1 : as : a3 : )N S. ThenB is either a block or group db. Put
0(B) = (ag : a1 : az : az/v : u). (Forgeventaké(B) = (a1 : ag : as : ag : u).) Then
0(B) € S (resp.d(B) € &) if Bis a block (resp. a group) d. Moreoverf(6(p)) = p
forallp € DU & andf(6(B)) = B for each block or groupB of S. Finally, to see
that 6 is a polarity we must show that € B if and only if §(B) € 0(p). To see this,
takep = (po : p1 i p2 i p3s:A) €D,z = (2 :21 :20: 23 :0) € & andlet
B =z0: 2 :22:vzg:u|NS beablock. Then

0(B)€eb(p) < (20:21:22:23: )€ [po:p1:p2:vp3:ANS
<= 20po + z1p1 + z2p2 +v23p3 + pA =0
< (po:p1:P2:DP3:A)EJz0:21:22:v23: ]
< pEeEB [ |
Remark. Note that statement 1) of Proposition 1 is dual to 2) and 3) is dual to 4) there.

Thus by Theroem 5 it would have sufficed to prove 1) and 3) in Propositiofi Wire not
just an ovoid but in fact a quadric.

2.1. The Inherited Automorphism Group oD

We begin with a lemma.
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LeEMMA 2 Every automorphism of D inherited fromPGL(5, q) fixesV and stabilizes
E.

Proof: Case 1:¢ > 3. Lemma 1 implies that any line iRG(3, ¢) meetsS in at most
2 points unless the line is one of tiiéz, V') for z € £. It follows thatV is fixed by
¢. Also sinceH is the unique hyperplane missirfy H., is stabilized. Sinc&€ =
Uzes(U(z, V) N Hy), this implies that is stabilized byp.

Case 2:q = 3. Again H is the unique solid missing. We will see below in Corol-
lary 11 that there are exactly 10 solifis, . . ., H1o in PG(3, 3) which meetS in 2 points.
Furthermore the planed; N H, are the 10 tangent planesfcand so they determing.
Thereforep must stabilize£. [ |

THEOREM 4 The automorphism grou@ of D inherited fromPGL(5, ¢) consists pre-
cisely of all projective transformations obtained from matriddsin GL(5, ¢) of the fol-
lowing form:

0
A |0

M = 0
0

0000 | A

whereA is the matrix corresponding to an automorphism of the salid which stabilizes
the ovoid€. In particular, if ¢ is odd orq = 4, since€ is then a quadricA corresponds to
an element of the (projective) orthogonal group in 4 variables.

Proof: We can choose homogeneous coordinates solthat (0 : 0 : 0 : 0 : 1)
and H., has equatiorx, = 0. The theorem now follows from the previous lemma.
[ ]

COROLLARY 1 If £is a quadric then every correlation @ is the product of an element
of G with the polarityd.

Remark. Insuch a case, using the existence of a cyclic collineation on the quadric we see
thatG contains an abelian subgrodépwhich acts regularly on both the points and blocks

of S. The existence of a polarity di? then follows from an old result of M. Hall (see [1,
page 37]).

3. Pellegrino’s 20 Cap in AG(4,3)

We want to focus now on the cage= 3. In AG(4, 3) the points of the desigP give the
points of a cap. A celebrated result of Pellegrino [13] (see also [5]) implies that this is in
fact a maximum cap odlG(4, 3). In fact, more generally in [13] Pellegrino showed that

a maximum cap inPG(4, 3) contains 20 points and he constructed such caps including
one which lies inAG(4, 3). However we must point out that the proof of Pellegrino is
conceptually very difficult and the details are most intricate.
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L. Haddad [4] shows directly that any set of 21 pointsdi@(4, 3) contains three points
which are collinear. Here we give a transparent geometric proof that any cap of size 20
in AG(4,3) is of the formS = S(V,&). This structure theorem will also imply (see
Theorem 5) that any cap ofG (4, 3) has at most 20 points.

Now let.S C AG(4,3) be any cap of cardinality 20. We will denote the set of all solids
in AG(4, 3) by H. Defineh; to be the cardinality of the sétH € H : |[H N S| = i} for
i =0,...,20. Note thath;, > 0. We now proceed to the standard incidence equations for
points, pairs of points, and triples of points 4G (4, 3)(cf. [3]). Recalling|S| = 20 we
obtain

20

> hi = [H| = 120. ©)

=0
Counting incidences of points ifl with solids inAG(4, 3) gives

20
> ihi = 40[S| = 800. 1)

=0

Simlarly counting incidences of pairs and triples gives

> (3)=19('5) =200 @
=0

and

20 . ‘S|
3 <;> hi = 4( ] ) = 4560. @3)

=0

SinceH N S is a cap inAG(3, 3) for every H € ‘H we know thath; = 0 for ¢ > 10.
Furthermore, if some soli@ metS in less than 2 points then at least one of the two solids
parallel toH would have to contain at least 10 points%flt follows thathg = h; = 0.

LEMMA 3 There existd] € H suchthaiHd N S| =2,i.e.,hy > 1.

Proof: Assume that, = 0. The linear combinatiofi(Eq. 3) — 28(Eq. 2) + 78(Eq. 1) —
168(Eq. 0) yields the equality-12h3 + 2hs5 + 8hs + 30hg = 440. Now if a solid H meets
S in 3 points then one of the solids paralleltbmeetsS in 8 points and the other meets
S'in 9 points. Therefordis > hs andhg > hg. Substituting these inequalities into the
previous equation yield®hs + 26h3 < 440, and thushs < 16.

The linear combinatior(Eq. 3) — 32(Eq. 2) + 98(Eq. 1) — 224(Eq. 0) yields the
equality —20h3 + 6h5 + 4hg + 10hg = —160. Usinghg > hs again, we deduce that
—10hg + 6h5 + 4hg < —160 and sohs > 16 + 3hs5/5 + 2hg/5. Thushs = 16 and
hs = hg = 0. It follows that the only remaining unknowns alig, i, hg andhg. We
can then solve for them usirigy. 0—Eq. 3, giving hs = hg = 16, hg = 19, hy = 9 and
hr = 60. From this we easily get a contradiction as follows.
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(1) sincehs = hg each solid meeting in 9 points is parallel to one meetirtfjin 8 points
(and to another meeting in 3 points.)

(2) If H meetsS in 4 points, then the solids parallel # must both mee§ in 8 points.
From (1) and (2) it follows thatkg > hg + 2h4. This is a contradiction. ]

THEOREM 5 If S C AG(4,3) is a cap with|.S| > 20 then|S| = 20 and.S = S(V,C) for
some quadri€ and some verteX'. In particular, any capS of AG(4, 3) has at most 20
points with equality if and only i is of the formS = S(V,C).

Proof: We embedAG(4, 3) into PG(4,3). We will use standard combinatorial results
concerning the numbers of various subspaced@(n,q) and PG(n,q) whenn = 4
andq = 3. See for example Appendix B on finite geometries in [12]. E&f :=
PG(4,3) \ AG(4,3) be the “solid at infinity”.

By the above lemma there exists an affine sdlidmeeting.S in exactly two points.
Denote its projective completion bify C PG(4,3). So|HoN S| = 2. Let Hy, Hs be
solids inPG(4, 3) such thatH,, Hy, Ho, H is the pencil of solids containingy N Ho.
Then|H; N S|+ |H2 N S| = 18. ThereforeH,; N S is a punctured elliptic quadric (see the
introduction), and we Writ€; =H,NnS=C\ {p;} fori = 1,2 whereC; is an elliptic
quadric. Henc& = {a, b} Uy U Cy, with Hy N S = {a, b}.

Let ¢ be the line througla andb. There are thirteen planes G (4, 3) which contain
¢. Of these, 4 are contained i,. LetIl,I,,..., Iy be the 9 planes which contain
and which are not themselves containedfin Clearly each of the 18 points éfdifferent
from a andb lies in exactly one of thél;. Since no plane can contain more than 4 points
of a cap and sincéhas 2 points of the cap we see tidt N S| =4fori=1,2,...,09.

Now there are 40 planes containeddn. Of these, 10 are tangentde and the remaining
30 meetC; in 4 points. For every € C; there are exactly 12 secant plane€towhich
pass through. In particular, forz = p; there are exactly 12 planés, I'y, ..., 12 in Hy
which meetC; in three points and contaj .

Take any solidK” in PG(4,3) which containg and is different fromH,. Consider the
pencil of 4 planes i which contairy. Apart fromK N H,, each of these planes is one of
thell;. Thus|K N S| = 2+ 3(2) = 8 and thereforék N (C; UC,)| = 6. Now fori = 1,2
we haveK N C; =KNH;NC;. BuUK N H; is plgne inH; ang thereforéeK NC;| = 1 or
4. Henced K NC;| € {0,1,3,4}. Thereford K NC;| = |K NCe| = 3 andpy, ps € K.

Since there are 13 solids containifithere are 12 solid&’;, K, ..., K15 different from
H,y which may be used in the role df in the previous paragraph. By the result there,
each of them meetH; in a plane containing; and 3 points of;. In particular,p; lies in
K, as doegy. Thuspi,ps2,a,b € K for j =1,2,...,12. But no plane is contained in
more than 4 solids. Therefogg, p2, a, b are all collinear. Since,, ps € H, this implies
{p1} =N Hs = {p2}. We will usep to denote the point; = p-.

Let V' be the fourth point on the linédifferent froma, b andp. We will now show that
C1 andC, are in perspective froiit. Recall thafII; N S| = 4 and thatz, b € II; N S. By
way of contradiction, assume that there exjsts {1, 2, ..., 12} such thaiIIl, N G| =2.
Then the linell; N H; meetsC; in 3 points since € II; N Hy, a contradiction. Hence,
I, NCy| < 1for eachj. Similarly, |IT; NCy| < 1. But|II; N (C, UC,)| = 2 and therefore
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I, NC;| =1fori=1,2andj = 1,...,12. Defineu; := I1; N C; andw; := I1; N s
forj =1,2,...,12. Sinceu; € Hy \ Hy andw; € Hs \ Ho, the linel(u;, w;) meets
Hy in a pointz; which does not lie inf.,. Consider the 9 points of the affine plane
II; = II; \ Hx. Thenz; € II; N Hy = {a,b,V}. SinceS is a cap containing, b and
alsou;, w; it follows that we must have; = V. ThusC, andC, are in perspective from
V. HenceS = S(V,Cy).

It only remains to show that no cap (G (4, 3) contains more than 20 points. By way of
contradiction, supposE is a cap containing more than 20 points. ISdbe a subset df’ of
size 20. Then by the abov€,= S(V,C) for some quadri€ and verteXxt. Taket € T'\ S.
Projectt fromVtoy € H... Sincet ¢ S, we musthavg ¢ C. Choose a secant linétoC
throughy. Suppose thatintersect in the two points; andz,. LetII be the plane containg
¢andV. Chooses; € (V, z1) \ {V, z1} suchthat; ¢ (¢, z2). Now the two lined(sq, t)
and{(V, z9) of IT meet in a point, of S. By constructionss # z2. Furthermore, since
t ¢ S, itis clear thats, # V. But then since € ((V, z3) we havet € S, a contradiction.

]

COROLLARY 2 There exist 10 solids which megin 2 points, i.e., = 10.

Proof: SupposeX !s a so[id such thatk N S| = 2 and letll := Hy N H; = Hy N H,.
Now IT misses botlt’; andC,. ThusII is both the tangent plane & atp and the tangent
plane toCy atp. If K containsIl thenK € {Hy, Hy, Hy, Hy} and thusk = Hy. If
II ¢ KthenK NC; # {p} and thusK N H; is a tangent plane t6; at some point other
thanp fori =1,2. Write K NC; = {u;} andK NCy = {wy}. Sincea, b, p ¢ K, we must
haveK N ¢ = {V}. But then since:; andV are inK, we must also have; € K since
from abovew; andw, are in perspective frorly. Hencej = k and there are at most 9
choices forK other thanH,: they correspond to the 9 lines througtother thar? coming
from the perspective af; with C,.

Conversely, ifK is the solid containing” and containing the tangent planeGpat u;
then itis clear that N Hy, is the tangent plane &, atw;. Furthermore, sinc¥ € K and
p¢ K,a,b¢ Kandthusk NS = {u;,w;}. [ |

4. Concluding Remarks
4.1. Polarity

We have shown in Theorem 3 thatéfis a quadric then there exists a polarityf We
point out however that the structure of ovoidsiz(3, ¢) is unknown forg even. This
gives rise to the following question.

Question. Does there always exist a polarity Dfwhether or nof is a quadric?
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4.2. Construction of Semi-Biplanes

Inthe three dimensional cageconsists of two isomorphic semi-biplanes eaclig@n-1) /2
points and having block siz¢ Semi-biplanes with these parameters are also described
in [8]. The arguments in Section 1 in fact, remain valid over infinite fields. Thus the
construction in Section 1 gives infinite semi-biplanes in that case.

4.3. Higher dimensions, other quadrics

Of course, our construction can be partially generalized to ruled quadrics and quadrics in
higher dimensions. However since there are more than two kinds of pairs of points in those
settings we will not get a group divisible design in those cases.

4.4. Quotient constructions and work of D. Jungnickel and E. Moorhouse

Our construction in Section 1, The Three Dimensional Case, yields by Theorem 2 two semi-
biplanes or{¢? — 1) /2 points which are isomorphic to each other. These semi-biplanes are
examples ohomology semi-biplandn the terminology of Moorhouse (see [11]). In [11]
Moorhouse poses the question as to whether all homology semi-biplanes are constructible as
a quotient of a projective plane by an involutory homology. Itis not clear, apart from small
cases, whether or not the homology semi-biplanes constructed in Section 1 are constructible
as such quotients.

As regards the designs constructed in Section 2, we should point out that in [10] D. Jung-
nickel has constructed symmetric group divisible designs with the same parameters. These
designs in [10] are again obtained as quotients of projective planes. However, as is pointed
outin [11], the isomorphism problem appears to be a difficult one. Our construction is valid
for any ovoid inPG(3, ¢). As pointed out in Remark 1 above the structure of such ovoids
for ¢ even is unknown.
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