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For n ≥ 2, we denote byPG(n, q) the finite projective space of dimensionn over
F := GF (q), the field of orderq. SimilarlyAG(n, q) denotes the affine space of dimension
n overF . A subset ofPG(n, q) orAG(n, q) is acap if no three of its points are collinear.
For 1 ≤ k ≤ n, a subsetK ⊆ PG(n, q) is ak-flat if K is isomorphic toPG(k, q). A
line is a 1-flat, aplaneis a 2-flat and asolid is a3-flat. The complement inPG(n, q) of an
(n−1)-flat is isomorphic toAG(n, q). We will denote bỳ (x, y) the unique line containing
bothx andy.

We begin by recalling the structure of maximal caps in low dimensions. Proofs of these
results may be found in [6] and [7]. A conicΩ in PG(2, q) consists ofq + 1 points no
three of which are collinear. A line ofPG(2, q) meets a conic in 0, 1 or 2 points. The lines
which meetΩ in 2 points are calledsecantlines; those that meetΩ in a single point are
calledtangentsand the lines which missΩ are calledexterior lines. For each pointp ∈ Ω
there exists a unique line tangent toΩ at p. There are(q2 + q)/2 secant lines toΩ and
(q2 − q)/2 exterior lines. Ifq is odd then every maximum cap inPG(2, q) is a conic. Ifq
is even then theq + 1 tangents toΩ are all concurrent. Their common point is called the
nucleusof Ω. Every line through the nucleus,N , is a tangent line toΩ. For q even every
maximum cap containsq + 2 points. As above, one way to realize such a maximum cap is
to take a conic together with its nucleus.

A maximum cap inPG(3, q) with q 6= 2 consists ofq2 + 1 points. (A maximum cap in
PG(3, 2) contains 8 points.) Such a set ofq2 + 1 points is called anovoid. If q is odd or
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q = 4 then every ovoid is an elliptic quadric. Conversely an elliptic quadric is an ovoid
for all q. If E ⊂ PG(3, q) is an ovoid then at each point ofE there exists a unique tangent
plane. Other than theseq2 + 1 tangent planes, each of the remainingq(q2 + 1) planes in
PG(3, q) meetsE in q + 1 points which form a cap. IfE is an ovoid andp /∈ E then there
are exactlyq + 1 tangent planes toE which pass throughp. If E is any ovoid inPG(3, q)
and` is a line containing no points ofE then` is in exactly 2 tangent planes ofE ; each of
the remainingq − 1 planes through̀ meetsE in q + 1 points.

To construct a maximum cap inAG(3, q) whereq > 2 we begin with an ovoidE ⊂
PG(3, q). Choose any pointz ∈ E and letΠz be the unique tangent plane toE at z. Then
E \{z} is a maximum cap inAG(3, q). We call such a cap apunctured ovoidwith puncture
pointz. If E is an elliptic quadric we also use the termpunctured elliptic quadricfor E \{z}.

1. The Three Dimensional Case

1.1. The Construction

Let q be a prime power and putΠ∞ := PG(2, q). Choose a conicΩ ⊂ Π∞. Embed
Π∞ ⊂ PG(3, q) and chooseV ∈ PG(3, q) \Π∞. Then we define the following two sets:

C = C(V,Ω) :=
⋃
z∈Ω

`(V, z) and Ĉ := C \ (Ω ∪ {V }) .

Since|Ω| = q + 1, we have|C| = q(q + 1) + 1 = q2 + q + 1 and|Ĉ| = q2 − 1.
We define two structuresP (resp.P̂) having points and blocks as follows. The points

of P (resp.P̂) are just the points ofC (resp.Ĉ). For z ∈ Ω we denote bỳ z the unique
tangent line atz to Ω in Π∞. Now there areq + 1 planesΠ∞,Πz,0, . . . ,Πz,q−1 through
`z. Reordering these planes we may arrange thatV ∈ Πz,0.

The blocks ofP are defined to be the intersectionsBz,i := Πz,i ∩ C for z ∈ Ω and
i = 0 . . . , q − 1. In addition,Ω = Π∞ ∩ C is also declared to be a block ofP. Thus
P hasq(q + 1) + 1 = q2 + q + 1 = |P| blocks. We note that, by definition, the lines
`(V, z) = Πz,0 ∩ C for z ∈ Ω are each blocks ofP.

The blocks ofP̂ are defined to be the intersectionsB̂z,i := Πz,i ∩ Ĉ for z ∈ Ω and
i = 1 . . . , q − 1. It follows that, unlikeP, none of the blocks of̂P are the intersections of
P̂ with lines ofPG(3, q). Also P̂ hasq2 − 1 blocks as well asq2 − 1 points.

Theorem 1 If q is even thenP is the Desarguesian projective plane.

Proof: If V /∈ Πz,i thenBz,i andΩ are in perspective fromV , as are their nuclei. Then
the nucleusM of Bz,i is the point of intersection of the planeΠz,i with the line`(V,N)
whereN is the nucleus ofΩ. Sincè z is tangent toΩ,N ∈ `z which in turn is contained in
Πz,i. Thus the linè (V,N) and the planeΠz,i meet exactly inN and thereforeM = N . In
particular, all of the blocks ofP, other than theq + 1 lines`(V, z), are conics which share
the same nucleus,N . Note also that all the planesΠ∞ andΠz,i containN . Moreover each
one of theq2 + q + 1 planes onN is someΠz,i or isΠ∞.
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We now show that no two pointsx1, x2 of P are collinear withN . This is clear unless
x1 /∈ Ω andx2 /∈ Ω. In that case lety be the intersection of̀(x1, x2) with Π∞. The
pointsx′1 := `(V, x1)∩Π∞, x′2 := `(V, x2)∩Π∞ andy are three collinear points inΠ∞.
Sincex′1 andx′2 are inΩ, andΩ has no three of its points collinear, it follows thaty /∈ Ω.
Moreovery 6= N , sincey is on a secant line toΩ. Hence no two points ofP are collinear
with N .

We have now that the blocks ofP are the intersections withC of the planes inPG(3, q)
throughN . The intersection of any two such planes is a line throughN . Since|C| =
q2 +q+1, and no two points ofC are collinear withN , it follows that each of theq2 +q+1
lines throughN meetsC in exactly one point. Consequently,P can be thought of as the
quotient geometry atN which isPG(2, q). (For a definition of quotient geometry see [2,
page 25]).

Recall (see [8]) that a semi-symmetric design is a connected incidence structure of points
and blocks with constant block size and replication number and such that any pair of points
(resp. blocks) lies on exactly 0 orλblocks (resp. points). Whenλ = 2 we get a semi-biplane.

Theorem 2 Let q be odd. Then̂P is not connected but rather has two connected com-
ponents. Each of these components is a semi-biplane on(q2 − 1)/2 points.

Outline of proof: We use arguments similar to those in the proof of the previous theorem
with the following important difference: for a conic withq odd each point not on the conic
lies either on exactly 2 or 0 tangents to that conic. The connectedness properties follow
from a coordinate calculation.

2. The Four Dimensional Case: A Symmetric Group Divisible Design

Note. In the rest of this paper for the sake of brevity alone we will assume thatq 6= 2.

We proceed to construct certain symmetric group divisible designs. A symmetric (some-
times called square) group divisible design has an equal number of points and blocks.
Recall (see [1]) that a group divisible design is an incidence structure with the following
two properties:
(a) All blocks have the same size,k.
(b) Thev = nm points are partitioned intom point clases, each ofn points (the groups).
Any two points from distinct groups are joined by exactlyµ > 0 blocks whereas points in
the same group are not joined by any block.

These group divisible designs have been of considerable importance in design theory
(see [1]). See also the interesting survey paper [10]. Note that in the symmetric or square
case there are various consequences. For example, the relation of being disjoint is an
equivalence relation on the blocks and any two disjoint blocks meet precisely the same
groups. For further details see [9].

Let E be an ovoid contained inH∞ ∼= PG(3, q). For eachz ∈ E let Πz denote the
unique plane inH∞ which is tangent toE at z. EmbedH∞ into PG(4, q) and choose



              

148 BRUEN AND WEHLAU

V ∈ PG(4, q)\H∞. Thecone onE , is the set of pointsC = C(V, E) = ∪
p∈E `(V, p). Define

S = S(V, E) := C(V, E) \ (E ∪{V }). Since|E| = q2 + 1, we have|S| = (q− 1)(q2 + 1).
We construct a symmetric group divisible designD on the points ofS, as follows.

The groups ofD are the setsGz := `(V, z)\{z, V } for z ∈ E . Thus each group contains
q − 1 points.

Now for eachz ∈ E , there areq + 1 solidsH∞, Hz,0, . . . , Hz,q−1 in PG(4, q) which
containΠz. Since the union of theseq+ 1 solids is all ofPG(4, q), by reordering theHp,i

we may assume thatV ∈ Hz,0. ThenHz,0 ∩ S = `(V, z) \ {V, z} is the groupGz. The
setsBz,i := Hz,i ∩ S for 1 ≤ i ≤ q − 1 andz ∈ E are the blocks ofD. Thus there are
(q − 1)(q2 + 1) = |S| blocks ofD.

Lemma 1 If ` is a line inPG(3, q) and` contains more than 2 points ofS∪E then∃z ∈ E
such that̀ = `(z, V ).

Proof: Suppose thatx1, x2, x3 are three distinct points in(S∪E)∩`. Fori = 1, 2, 3 denote
by zi the point of intersection of̀(xi, V ) withH∞. Thenz1, z2 andz3 are collinear points
of E . Since every line ofH∞meetsE in at most 2 points,|{z1, z2, z3}| ≤ 2. Without loss of
generality,z1 = z2. Thereforè (V, x1) = `(V, z1) = `(V, z2) = `(V, x2) = `(x1, x2) =
`.

Proposition 1 1) Each block ofD contains exactlyq2 points ofD.
2) Each point ofD is contained in exactlyq2 different blocks ofD.
3) If x1, x2 are not contained in any one group then there are exactlyq + 1 blocks ofD
which contain bothx1 andx2.
4) If z1 6= z2 then|Bz1,i ∩Bz2,j | = q + 1 for all i, j.

Proof: 1) Note thatBz,i ∪{z} is in perspective fromV with E . Therefore for eachz ∈ E
and all1 ≤ i ≤ q − 1,Bz,i is a punctured ovoid with puncture pointz and|Bz,i| = q2.

2) Fix a pointx ∈ D and letz′ ∈ E be the point of intersection of̀(V, x) with Π∞. For
eachz ∈ E with z 6= z′, there exists a unique solidHz,i(x) which containsΠz andx. Then
x ∈ Bz,i(x). Hencex lies in q2 different blocks.

3) Supposex1, x2 ∈ D do not lie in the same group (i.e.,x1, x2 andV are not collinear).
The line`(x1, x2) meetsH∞ at some pointz′. By Lemma 1,z′ /∈ E . InH∞ there areq+1
tangent planes toE , Πz1 , . . . ,Πzq+1 throughz′. For eachzj , there exists a uniquei = i(j)
such thatx1 ∈ Hzj ,i. Finally x2 ∈ `(x1, z

′) ⊂ Hzj ,i. Also by the definition of the blocks
it is clear that no other block contains bothx1 andx2.

4) Note that inH∞ the two tangent planesΠz1 andΠz2 intersect in a linè which does
not intersectE . All of the other planes through̀inH∞ containq+ 1 points ofE . LetΠ be
the plane of intersection of the two solidsHz1,i andHz2,j . We have thatΠ ⊃ `. ProjectΠ
toH∞ from V to get the planeΠ′. SinceHz1,i does not containV , Π′ 6= Πz1 . Similarly,
Π′ 6= Πz2 . ThereforeΠ′ contains exactlyq + 1 points ofE . Joining these points toV
and intersecting withΠ gives thatBz1,i andBz2,j have exactlyq + 1 points in common.

As in [1] a correlationof an incidence structure with itself is a bijectionθ between the
points and the blocks and satisfyingp ∈ B ⇐⇒ θ(B) ∈ θ(p) for all pointsp and blocks
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B. If θ has order 2 this correlation is called apolarity. Note that ifθ is a polarity andθ1

is any other correlation then their product is a collineation (automorphism of the incidence
structure) and thereforeθ1 is expressible as a product of a collineation times the given
polarityθ.

Theorem 3 If E is a quadric thenD is self-dual.

Proof: We will give a proof using homogeneous coordinates onPG(4, q). We will write
(x0 : x1 : x2 : x3 : x4) for the homogeneous coordinates of a point and we denote by
[a0 : a1 : a2 : a3 : a4] the hyperplane ofPG(4, q), [a0 : a1 : a2 : a3 : a4] := {(x0 : x1 :
x2 : x3 : x4) ∈ PG(4, q) | a0x0 + a1x1 + a2x2 + a3x3 + a4x4 = 0}. We may assume
thatH∞ = [0 : 0 : 0 : 0 : 1] and thatV = (0 : 0 : 0 : 0 : 1).

If q is odd then by [6, Theorem 5.1.6], we may assume thatE is the set of points inH∞
which satisfy the equationx2

0 + x2
1 + x2

2 + νx2
3 whereν is some non-zero element ofF .

ThusE = {(x0 : x1 : x2 : x3 : 0) | x2
0 + x2

1 + x2
2 + νx2

3 = 0}. If q is even then by [6,
Theorem 5.1.7] we may assume thatE is the set of points inH∞ which satisfy the equation
νx2

0 + x0x1 + x2
1 + x2x3 for someν 6= 0. We will give the proof of Theorem 3 forq odd.

Working inH∞, let z = (z0 : z1 : z2 : z3) ∈ E . Then the tangent plane toE at z is the
planeΠz = [z0 : z1 : z2 : νz3]. Returning toPG(4, q), let p = (p0 : p1 : p2 : p3 : λ)
be any point ofS ∪ E . Recall thatH∞ has equationx4 = 0. It follows thatz = (p0 :
p1 : p2 : p3 : 0) is onE . Moreover the solids,[p0 : p1 : p2 : νp3 : λ] for λ ∈ F q are
theq solids other thanH∞ which containΠz. We want to construct a mapθ which gives
a duality ofD. Defineθ(p) to be the set[p0 : p1 : p2 : νp3 : λ] ∩ S. (For q even take
θ(p) := [p1 : p0 : p3 : p2 : λ] ∩ S.) Thusθ(p) is a block (resp. a group) ofD if p ∈ S
(resp.p ∈ E).

Let B = [a0 : a1 : a2 : a3 : µ] ∩ S. ThenB is either a block or group ofD. Put
θ(B) = (a0 : a1 : a2 : a3/ν : µ). (Forq even takeθ(B) = (a1 : a0 : a3 : a2 : µ).) Then
θ(B) ∈ S (resp.θ(B) ∈ E) if B is a block (resp. a group) ofD. Moreoverθ(θ(p)) = p
for all p ∈ D ∪ E andθ(θ(B)) = B for each block or groupB of S. Finally, to see
that θ is a polarity we must show thatp ∈ B if and only if θ(B) ∈ θ(p). To see this,
take p = (p0 : p1 : p2 : p3 : λ) ∈ D, z = (z0 : z1 : z2 : z3 : 0) ∈ E and let
B = [z0 : z1 : z2 : νz3 : µ] ∩ S be a block. Then

θ(B) ∈ θ(p) ⇐⇒ (z0 : z1 : z2 : z3 : µ) ∈ [p0 : p1 : p2 : νp3 : λ] ∩ S
⇐⇒ z0p0 + z1p1 + z2p2 + νz3p3 + µλ = 0
⇐⇒ (p0 : p1 : p2 : p3 : λ) ∈ [z0 : z1 : z2 : νz3 : µ]
⇐⇒ p ∈ B

Remark. Note that statement 1) of Proposition 1 is dual to 2) and 3) is dual to 4) there.
Thus by Theroem 5 it would have sufficed to prove 1) and 3) in Proposition 1 ifE were not
just an ovoid but in fact a quadric.

2.1. The Inherited Automorphism Group ofD

We begin with a lemma.
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Lemma 2 Every automorphismφ ofD inherited fromPGL(5, q) fixesV and stabilizes
E .

Proof: Case 1:q > 3. Lemma 1 implies that any line inPG(3, q) meetsS in at most
2 points unless the line is one of the`(z, V ) for z ∈ E . It follows thatV is fixed by
φ. Also sinceH∞ is the unique hyperplane missingS, H∞ is stabilized. SinceE =
∪x∈S(`(x, V ) ∩H∞), this implies thatE is stabilized byφ.
Case 2:q = 3. AgainH∞ is the unique solid missingS. We will see below in Corol-
lary 11 that there are exactly 10 solidsH1, . . . , H10 in PG(3, 3) which meetS in 2 points.
Furthermore the planesHi ∩H∞ are the 10 tangent planes toE and so they determineE .
Therefore,φ must stabilizeE .

Theorem 4 The automorphism groupG of D inherited fromPGL(5, q) consists pre-
cisely of all projective transformations obtained from matricesM in GL(5, q) of the fol-
lowing form:

M =


0

A 0
0
0

0 0 0 0 λ


whereA is the matrix corresponding to an automorphism of the solidH∞ which stabilizes
the ovoidE . In particular, if q is odd orq = 4, sinceE is then a quadric,A corresponds to
an element of the (projective) orthogonal group in 4 variables.

Proof: We can choose homogeneous coordinates so thatV = (0 : 0 : 0 : 0 : 1)
andH∞ has equationx4 = 0. The theorem now follows from the previous lemma.

Corollary 1 If E is a quadric then every correlation ofD is the product of an element
ofG with the polarityθ.

Remark. In such a case, using the existence of a cyclic collineation on the quadric we see
thatG contains an abelian subgroupK which acts regularly on both the points and blocks
of S. The existence of a polarity onD then follows from an old result of M. Hall (see [1,
page 37]).

3. Pellegrino’s 20 Cap in AG(4,3)

We want to focus now on the caseq = 3. In AG(4, 3) the points of the designD give the
points of a cap. A celebrated result of Pellegrino [13] (see also [5]) implies that this is in
fact a maximum cap onAG(4, 3). In fact, more generally in [13] Pellegrino showed that
a maximum cap inPG(4, 3) contains 20 points and he constructed such caps including
one which lies inAG(4, 3). However we must point out that the proof of Pellegrino is
conceptually very difficult and the details are most intricate.
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L. Haddad [4] shows directly that any set of 21 points inAG(4, 3) contains three points
which are collinear. Here we give a transparent geometric proof that any cap of size 20
in AG(4, 3) is of the formS = S(V, E). This structure theorem will also imply (see
Theorem 5) that any cap ofAG(4, 3) has at most 20 points.

Now letS ⊂ AG(4, 3) be any cap of cardinality 20. We will denote the set of all solids
in AG(4, 3) byH. Definehi to be the cardinality of the set{H ∈ H : |H ∩ S| = i} for
i = 0, . . . , 20. Note thathi ≥ 0. We now proceed to the standard incidence equations for
points, pairs of points, and triples of points inAG(4, 3)(cf. [3]). Recalling|S| = 20 we
obtain

20∑
i=0

hi = |H| = 120. (0)

Counting incidences of points inS with solids inAG(4, 3) gives

20∑
i=0

ihi = 40|S| = 800. (1)

Simlarly counting incidences of pairs and triples gives

20∑
i=0

(
i

2

)
hi = 13

(
|S|
2

)
= 2470 (2)

and

20∑
i=0

(
i

3

)
hi = 4

(
|S|
3

)
= 4560. (3)

SinceH ∩ S is a cap inAG(3, 3) for everyH ∈ H we know thathi = 0 for i ≥ 10.
Furthermore, if some solidH metS in less than 2 points then at least one of the two solids
parallel toH would have to contain at least 10 points ofS. It follows thath0 = h1 = 0.

Lemma 3 There existsH ∈ H such that|H ∩ S| = 2, i.e.,h2 ≥ 1.

Proof: Assume thath2 = 0. The linear combination6(Eq. 3)−28(Eq. 2)+78(Eq. 1)−
168(Eq. 0) yields the equality−12h3 + 2h5 + 8h8 + 30h9 = 440. Now if a solidH meets
S in 3 points then one of the solids parallel toH meetsS in 8 points and the other meets
S in 9 points. Thereforeh8 ≥ h3 andh9 ≥ h3. Substituting these inequalities into the
previous equation yields2h5 + 26h3 ≤ 440, and thush3 ≤ 16.

The linear combination6(Eq. 3) − 32(Eq. 2) + 98(Eq. 1) − 224(Eq. 0) yields the
equality−20h3 + 6h5 + 4h6 + 10h9 = −160. Usingh9 ≥ h3 again, we deduce that
−10h3 + 6h5 + 4h6 ≤ −160 and soh3 ≥ 16 + 3h5/5 + 2h6/5. Thush3 = 16 and
h5 = h6 = 0. It follows that the only remaining unknowns areh4, h7, h8 andh9. We
can then solve for them usingEq. 0–Eq. 3, giving h3 = h9 = 16, h8 = 19, h4 = 9 and
h7 = 60. From this we easily get a contradiction as follows.
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(1) sinceh3 = h9 each solid meetingS in 9 points is parallel to one meetingS in 8 points
(and to another meetingS in 3 points.)
(2) If H meetsS in 4 points, then the solids parallel toH must both meetS in 8 points.
From (1) and (2) it follows thath8 ≥ h9 + 2h4. This is a contradiction.

Theorem 5 If S ⊂ AG(4, 3) is a cap with|S| ≥ 20 then|S| = 20 andS = S(V, C) for
some quadricC and some vertexV . In particular, any capS of AG(4, 3) has at most 20
points with equality if and only ifS is of the formS = S(V, C).

Proof: We embedAG(4, 3) into PG(4, 3). We will use standard combinatorial results
concerning the numbers of various subspaces inAG(n, q) andPG(n, q) whenn = 4
and q = 3. See for example Appendix B on finite geometries in [12]. LetH∞ :=
PG(4, 3) \AG(4, 3) be the “solid at infinity”.

By the above lemma there exists an affine solidH meetingS in exactly two points.
Denote its projective completion byH0 ⊂ PG(4, 3). So |H0 ∩ S| = 2. LetH1, H2 be
solids inPG(4, 3) such thatH0, H1, H2, H∞ is the pencil of solids containingH0 ∩H∞.
Then|H1 ∩ S|+ |H2 ∩ S| = 18. ThereforeHi ∩ S is a punctured elliptic quadric (see the
introduction), and we write̊Ci := Hi ∩ S = Ci \ {pi} for i = 1, 2 whereCi is an elliptic
quadric. HenceS = {a, b} t C̊1 t C̊2, withH0 ∩ S = {a, b}.

Let ` be the line througha andb. There are thirteen planes inPG(4, 3) which contain
`. Of these, 4 are contained inH0. Let Π1,Π2, . . . ,Π9 be the 9 planes which contaiǹ
and which are not themselves contained inH0. Clearly each of the 18 points ofS different
from a andb lies in exactly one of theΠi. Since no plane can contain more than 4 points
of a cap and sincèhas 2 points of the cap we see that|Πi ∩ S| = 4 for i = 1, 2, . . . , 9.

Now there are 40 planes contained inH1. Of these, 10 are tangent toC1 and the remaining
30 meetC1 in 4 points. For everyz ∈ C1 there are exactly 12 secant planes toC1 which
pass throughz. In particular, forz = p1 there are exactly 12 planesΓ1,Γ2, . . . ,Γ12 in H1

which meet̊C1 in three points and containp1.
Take any solidK in PG(4, 3) which contains̀ and is different fromH0. Consider the

pencil of 4 planes inK which contaiǹ . Apart fromK ∩H0, each of these planes is one of
theΠi. Thus|K ∩S| = 2 + 3(2) = 8 and therefore|K ∩ (C̊1 ∪ C̊2)| = 6. Now for i = 1, 2
we haveK ∩ Ci = K ∩Hi ∩ Ci. ButK ∩Hi is plane inHi and therefore|K ∩ Ci| = 1 or
4. Hence|K ∩ C̊i| ∈ {0, 1, 3, 4}. Therefore|K ∩ C̊1| = |K ∩ C̊2| = 3 andp1, p2 ∈ K.

Since there are 13 solids containing` there are 12 solidsK1,K2, . . . ,K12 different from
H0 which may be used in the role ofK in the previous paragraph. By the result there,
each of them meetsH1 in a plane containingp1 and 3 points of̊C1. In particular,p1 lies in
Kj , as doesp2. Thusp1, p2, a, b ∈ Kj for j = 1, 2, . . . , 12. But no plane is contained in
more than 4 solids. Thereforep1, p2, a, b are all collinear. Sincep1, p2 ∈ H∞ this implies
{p1} = ` ∩H∞ = {p2}. We will usep to denote the pointp1 = p2.

Let V be the fourth point on the linèdifferent froma, b andp. We will now show that
C1 andC2 are in perspective fromV . Recall that|Πj ∩ S| = 4 and thata, b ∈ Πj ∩ S. By
way of contradiction, assume that there existsj ∈ {1, 2, . . . , 12} such that|Πj ∩ C̊1| = 2.
Then the lineΠj ∩ H1 meetsC1 in 3 points sincep ∈ Πj ∩ H1, a contradiction. Hence,
|Πj ∩ C̊1| ≤ 1 for eachj. Similarly, |Πj ∩ C̊2| ≤ 1. But |Πj ∩ (C̊1 ∪ C̊2)| = 2 and therefore
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|Πj ∩ C̊i| = 1 for i = 1, 2 andj = 1, . . . , 12. Defineuj := Πj ∩ C̊1 andwj := Πj ∩ C̊2
for j = 1, 2, . . . , 12. Sinceuj ∈ H1 \H∞ andwj ∈ H2 \H∞, the line`(uj , wj) meets
H0 in a point zj which does not lie inH∞. Consider the 9 points of the affine plane
Πj = Πj \ H∞. Thenzj ∈ Πj ∩ H0 = {a, b, V }. SinceS is a cap containinga, b and
alsouj , wj it follows that we must havezj = V . ThusC1 andC2 are in perspective from
V . HenceS = S(V, C1).

It only remains to show that no cap inAG(4, 3) contains more than 20 points. By way of
contradiction, supposeT is a cap containing more than 20 points. LetS be a subset ofT of
size 20. Then by the above,S = S(V, C) for some quadricC and vertexV . Taket ∈ T \S.
Projectt fromV toy ∈ H∞. Sincet /∈ S, we must havey /∈ C. Choose a secant line,` toC
throughy. Suppose that̀intersectsC in the two pointsz1 andz2. LetΠ be the plane containg
` andV . Chooses1 ∈ `(V, z1) \ {V, z1} such thats1 /∈ `(t, z2). Now the two lines̀ (s1, t)
and`(V, z2) of Π meet in a points2 of S. By construction,s2 6= z2. Furthermore, since
t /∈ S, it is clear thats2 6= V . But then sincet ∈ `(V, z2) we havet ∈ S, a contradiction.

Corollary 2 There exist 10 solids which meetS in 2 points, i.e.,h2 = 10.

Proof: SupposeK is a solid such that|K ∩ S| = 2 and letΠ := H0 ∩H1 = H0 ∩H2.
Now Π misses both̊C1 andC̊2. ThusΠ is both the tangent plane toC1 atp and the tangent
plane toC2 at p. If K containsΠ thenK ∈ {H0, H1, H2, H∞} and thusK = H0. If
Π 6⊂ K thenK ∩ Ci 6= {p} and thusK ∩Hi is a tangent plane toCi at some point other
thanp for i = 1, 2. WriteK ∩C1 = {uj} andK ∩C2 = {wk}. Sincea, b, p /∈ K, we must
haveK ∩ ` = {V }. But then sinceuj andV are inK, we must also havewj ∈ K since
from abovew1 andw2 are in perspective fromV . Hencej = k and there are at most 9
choices forK other thanH0: they correspond to the 9 lines throughV other thaǹ coming
from the perspective ofC1 with C2.

Conversely, ifK is the solid containingV and containing the tangent plane toC1 at uj
then it is clear thatK ∩H2 is the tangent plane toC2 atwj . Furthermore, sinceV ∈ K and
p /∈ K, a, b /∈ K and thusK ∩ S = {uj , wj}.

4. Concluding Remarks

4.1. Polarity

We have shown in Theorem 3 that ifE is a quadric then there exists a polarity ofD. We
point out however that the structure of ovoids inPG(3, q) is unknown forq even. This
gives rise to the following question.

Question. Does there always exist a polarity ofD whether or notE is a quadric?
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4.2. Construction of Semi-Biplanes

In the three dimensional casêP consists of two isomorphic semi-biplanes each on(q2−1)/2
points and having block sizeq. Semi-biplanes with these parameters are also described
in [8]. The arguments in Section 1 in fact, remain valid over infinite fields. Thus the
construction in Section 1 gives infinite semi-biplanes in that case.

4.3. Higher dimensions, other quadrics

Of course, our construction can be partially generalized to ruled quadrics and quadrics in
higher dimensions. However since there are more than two kinds of pairs of points in those
settings we will not get a group divisible design in those cases.

4.4. Quotient constructions and work of D. Jungnickel and E. Moorhouse

Our construction in Section 1, The Three Dimensional Case, yields by Theorem 2 two semi-
biplanes on(q2− 1)/2 points which are isomorphic to each other. These semi-biplanes are
examples ofhomology semi-biplanesin the terminology of Moorhouse (see [11]). In [11]
Moorhouse poses the question as to whether all homology semi-biplanes are constructible as
a quotient of a projective plane by an involutory homology. It is not clear, apart from small
cases, whether or not the homology semi-biplanes constructed in Section 1 are constructible
as such quotients.

As regards the designs constructed in Section 2, we should point out that in [10] D. Jung-
nickel has constructed symmetric group divisible designs with the same parameters. These
designs in [10] are again obtained as quotients of projective planes. However, as is pointed
out in [11], the isomorphism problem appears to be a difficult one. Our construction is valid
for any ovoid inPG(3, q). As pointed out in Remark 1 above the structure of such ovoids
for q even is unknown.
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