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Abstract

The smallest known complete capsBf(n, 2) have size 2@"—9/2) _ 3if n > 10 is even
and size 12("~9/2) _ 3if n > 9 isodd. Here we give a simple construction of complete caps in
PG(n, 2) of size 242("~6)/2) _ 3 if n is evenand size 162("~5/2) _ 3if nis odd. Thus these caps
are only slightlylarger than the smallest complete caps knowiP@(n, 2).
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

A cap is a set with no three points collinear. A caplii(n, 2) is called complete
if it is not properly contained in any other cap lying #iz(n, 2). The smé#est known
complete caps ifPG(n, 2) were described by &bidulin et al. P]. These smidest known
caps have size 23"-9/2) _ 3 if n > 10 is even and size 18" /%) — 3ifn > 9
is odd. Here we describe some complete caps which are almost as small. Specifically the
caps,S,, constructed her have size @2 — 1) = 24(2("=6/2) _ 3 for n evenand size
200+3)/2 _ 3 = 16(2("—5/2) _ 3 forn odd.

The caps we describe here are constructed using the black/white lift, as descrijed in [
We briefly recall this construction. Leé be a cap inY = PG(n, 2). Givena pointx of X
not lying in Swe patrtition the se§into two subsets: thBlack pointsand theWhite points.
The black pointsB(x, S), are thepoints of the cap$, lying on the secant cone afand
the whitepoints,)W(x, S), are thepoints of S lying on the taagent cone ok. A point, w,
of X\ Sis adependable point for S if there doesot exist any other point € X'\ S with
W(w, S) € W(X, ).

Let Sbe a complete cap i = PG(n,2) andw € Y\S. EmbedY in a projective
spacei of one dimension more. Fix € E\E. Theblack/white lift of S with respect to
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the gex,v, is the capy, (S) in Y= PG(n + 1, 2) defined by, (S) := Su{x+v|x e
W(w, S} U {v + w}.
The following is a combination of Theorems 2.2 and 2.819f

Theorem 1.1. Let Sbe a&ompletecap in Y = PG(n, 2) wheren > 2andlet w € X\S.
Then ¥, (S) isacapin X = PG(n + 1, 2) of size #,(S) = #S+ #W(w, S + 1 =
2#S — #B(w, S) + 1. Moreover, if w isa dependable point for Sthen v, (S) iscomplete.

2. Thefamily of small complete caps

Let S3 be an ovoid inPG(3, 2). Each of the ten points d?PG(3, 2)\ s lies on aunique
secant line t0S;. Choose two pointsi, w € PG(3, 2)\ S such that the two corresponding
secant lines do not intersect. Thus we hége= {S1, S, 3, 4, S5} andu = s1 + S,
w=Sss+ygands =5+ +S3+% =w+ U.

. . . . . ) Yw(S-1), Iifniseven

For higher dimensions we defirtg inductively by S, := {%(Snl), if nis odd
We will denote byv or vy the apex usediconstructings, from S,—1.

Thus§, is a cap inPG(n, 2). To prove thatS, is a complete cap we will show thatis
a demndable point fof,_1 whenn is even and that is a depadable point folS,_1 when
nisodd.

Remark 2.1. It can be seen that all possible choices of the o®dogether with the
ordered pailw, u) are equivalent up to collineations.

3. Propertiesof S,

Lemma3.l W(w,S) = B(u, ) U {w +u} and W(u, ) = B(w, Sy) u {w + u} for
n> 3.

Proof. We proceed by induction om. The casen = 3 is easy and seve nsider
n > 4. By the symmetry between andu, we mayassume thal§, = v¥,,(S—1). By
constructionw + u € S_1 and thusw +u € W(w, Si—1) N W(u, $1_1). We first show
thatW(w, §) € B(u, ) U {w + u} and then thaB(w, $,) U {w +u} € W(u, &,). This
suffices since we havd/(w, SH U B(w, S) = S = WU, SH uBU, S).

Using [1, Proposition 3.2(3)] and induction, we s8®&(w, §,) = W(w, S-1) U
(S\S-1) = B, Si—1)u{w+ulu(Si\Si-1)- ClearlyB(u, S—1)u{w+u} € B(u, S,)u
{w + u}, and tus to prove the first inclush it remans to prove thag,\ S,-1 € B(u, ).
To prove ths, letx’ = x +v € $\S_1. We onsider three cases. The first case is
X =v+w. Wehavex’ +u =v+ (w+U) € § sincew +u € W(w, $,_1) and thus
x" € B(u, $). The seond case ix’ = v + w + u. Sincev + w andw + u € S,, we see
thatv + w 4+ u € B(u, S,). The thrd case isx = v + X' € W(w, Sh_1)\{w + u}. Then
X € B(u, $-1) by induction. Thux+u € B(u, $,—1) and therefor&+u € W(w, S$-1)
by induction. Hence» + x + u = X' + U € $,. Sincex’ € S, this givesx’ € B(u, &)
which proves the firstncluson.

For theother inclusion, we again applyL,[ Proposition 3.2(3)] and induction to get
B(w, &) u{w +u} = B(w, S-1) U{w +u} = WU, 1) S WU, §). O
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Proposition 3.2. For all n > 3, W(w, &) & W(u, S)) = PG(n, 2\ (S, U {w, u}).

Proof. Clearly, W(w, ) & WU, Sy) € PG(n, 2\($ U {w, u}). We will prove the
opposite inclusion by induction am Thecasen = 3 is left to the eader to verify.

Letn > 4. By the symmetry betweamandw we may assume th&, = ¥, (S-1).
LetZ € PG(n, 2\(S u {w, u}). If Z € PG(n — 1, 2), then by the induction hypothesis,
Z € Ww, Si-1) ® WU, $-1) € W(w, S) @ W(u, S). Thus we may assume that
Z ¢ PG(n—1,2).Hercez:=v + 7 ¢ PG(n—1, 2).

We distinguish three cases. #fe {w, u} then sincez’ ¢ S,, weknowz # w + v and
thusz=uandZ = v+ u. ThusZ = w+w)+U+w) e Ww,S) & W, ).
Secondly, ifz € $-1 then sinceZ ¢ S,, we must havez € B(w, $-1). Thus
z4+w € Bw,S-1) € WU, S-1) € WU, S). Sincew +v € W(w, S-1), we
havez = (w +v) + (z+ w) € W(w, S) @ W(u, ). Findly, if z ¢ (Si—1 1 {w, u})
then by inductionz = x 4+ y wherex € W(w, $—-1) andy € W(u, S,—1). Therdore
Z = (X+v)+ ywherex +v e W(w, &) andy e W, S). O

Corollary 3.3. For all n > 3, S, iscomplete and w and u are dependable pointsfor S,.

Proof. To see thabothw andu are dependable, consider any paihtt S, with Z # w
andz # u. Then byProposition 3.2there existx € W(w, $) andy € W(u, &)
suchthatx +y = 7. Thusx, y € B(Z,%). Therdore x ¢ B(Z, $)\B(w, $) and
y € B(Z,S)\B(u, S). It is clear fromLemma 3.1that B(w, S)) ¢ B(u, &) and
Bu,S) ¢ B(w,S). Thus bothu and w are dependable and byheorem 1.1 S, is
complete. O

It is easy to verify by induction that(&,) = 2/"/21(n) 4- 2L(+2/2] _ 3 ThusShas size
24(2"-6)/2) _ 3 if n is even and size 18" °/2) — 3if nis odd.
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