
European Journal of Combinatorics 24 (2003) 613–615

www.elsevier.com/locate/ejc

A family of small complete caps inPG(n,2)

Jeffrey J.E. Imbera, David L. Wehlaub

a330 Hersey Cr Bolton, Ontario, Canada L7E 3Z5
bDepartment of Mathematics and Computer Science, Royal Military College, PO Box 17000,

STN Forces Kingston, Ontario, Canada K7K 7B4

Received 27 February 2003; received in revised form 9 May 2003; accepted 12 May 2003

Abstract

The smallest known complete caps inPG(n,2) have size 23(2(n−6)/2) − 3 if n ≥ 10 is even
and size 15(2(n−5)/2) − 3 if n ≥ 9 is odd. Here we give a simple construction of complete caps in
PG(n,2) of size 24(2(n−6)/2)− 3 if n is evenand size 16(2(n−5)/2)− 3 if n is odd. Thus these caps
are only slightlylarger than the smallest complete caps known inPG(n,2).
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

A cap is a set with no three points collinear. A cap inPG(n,2) is calledcomplete
if it is not properly contained in any other cap lying inPG(n,2). The smallest known
complete caps inPG(n,2) were described by Gabidulin et al. [2]. These smallest known
caps have size 23(2(n−6)/2) − 3 if n ≥ 10 is even and size 15(2(n−5)/2) − 3 if n ≥ 9
is odd. Here we describe some complete caps which are almost as small. Specifically the
caps,Sn , constructed here have size 3(2n/2 − 1) = 24(2(n−6)/2) − 3 for n evenand size
2(n+3)/2 − 3 = 16(2(n−5)/2)− 3 for n odd.

The caps we describe here are constructed using the black/white lift, as described in [1].
We briefly recall this construction. LetS be a cap inΣ = PG(n,2). Givena point x of Σ
not lying in S we partition the setS into two subsets: theBlack points and theWhite points.
The black points,B(x, S), are thepoints of the cap,S, lying on the secant cone ofx and
the whitepoints,W(x, S), are thepoints ofS lying on the tangent cone ofx . A point,w,
of Σ\S is adependable point for S if there doesnot exist any other pointx ∈ Σ\S with
W(w, S) ⊆ W(x, S).

Let S be a complete cap inΣ = PG(n,2) andw ∈ Σ\S. EmbedΣ in a projective
spaceΣ̃ of one dimension more. Fixv ∈ Σ̃\Σ . Theblack/white lift of S with respect to
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the apex,v, is the capψw(S) in Σ̃ = PG(n + 1,2) defined byψw(S) := S � {x + v | x ∈
W(w, S)} � {v +w}.

The following is a combination of Theorems 2.2 and 2.8 of [1].

Theorem 1.1. Let S be a complete cap in Σ = PG(n,2) where n ≥ 2 and let w ∈ Σ\S.
Then ψw(S) is a cap in Σ̃ = PG(n + 1,2) of size #ψw(S) = #S + #W(w, S) + 1 =
2#S − #B(w, S)+ 1. Moreover, if w is a dependable point for S then ψw(S) is complete.

2. The family of small complete caps

Let S3 be an ovoid inPG(3,2). Each of the ten points ofPG(3,2)\S3 lies on aunique
secant line toS3. Choose two pointsu, w ∈ PG(3,2)\S3 such that the two corresponding
secant lines do not intersect. Thus we haveS3 = {s1, s2, s3, s4, s5} and u = s1 + s2,
w = s3 + s4 ands5 = s1 + s2 + s3 + s4 = w + u.

For higher dimensions we defineSn inductively bySn :=
{
ψw(Sn−1), if n is even;
ψu(Sn−1), if n is odd.

We will denote byv or vn the apex used in constructingSn from Sn−1.
ThusSn is a cap inPG(n,2). To prove thatSn is a complete cap we will show thatw is

a dependable point forSn−1 whenn is even and thatu is a dependable point forSn−1 when
n is odd.

Remark 2.1. It can be seen that all possible choices of the ovoidS3 together with the
ordered pair(w, u) are equivalent up to collineations.

3. Properties of Sn

Lemma 3.1. W(w, Sn) = B(u, Sn) � {w + u} and W(u, Sn) = B(w, Sn) � {w + u} for
n ≥ 3.

Proof. We proceed by induction onn. The casen = 3 is easy and sowe consider
n ≥ 4. By the symmetry betweenw andu, we mayassume thatSn = ψw(Sn−1). By
construction,w + u ∈ Sn−1 and thusw + u ∈ W(w, Sn−1) ∩ W(u, Sn−1). We first show
thatW(w, Sn) ⊆ B(u, Sn) � {w+ u} and then thatB(w, Sn) � {w+ u} ⊆ W(u, Sn). This
suffices since we haveW(w, Sn) � B(w, Sn) = Sn = W(u, Sn) � B(u, Sn).

Using [1, Proposition 3.2(3)] and induction, we seeW(w, Sn) = W(w, Sn−1) �
(Sn\Sn−1) = B(u, Sn−1)�{w+u}�(Sn\Sn−1). ClearlyB(u, Sn−1)�{w+u} ⊆ B(u, Sn)�
{w+ u}, and thus to prove the first inclusion it remains to prove thatSn\Sn−1 ⊆ B(u, Sn).
To prove this, let x ′ = x + v ∈ Sn\Sn−1. We consider three cases. The first case is
x ′ = v + w. We havex ′ + u = v + (w + u) ∈ Sn sincew + u ∈ W(w, Sn−1) and thus
x ′ ∈ B(u, Sn). The second case isx ′ = v + w + u. Sincev + w andw + u ∈ Sn , we see
thatv + w + u ∈ B(u, Sn). The third case isx = v + x ′ ∈ W(w, Sn−1)\{w + u}. Then
x ∈ B(u, Sn−1) by induction. Thusx +u ∈ B(u, Sn−1) and thereforex +u ∈ W(w, Sn−1)

by induction. Hencev + x + u = x ′ + u ∈ Sn . Sincex ′ ∈ Sn , this givesx ′ ∈ B(u, Sn)

which proves the firstinclusion.
For theother inclusion, we again apply [1, Proposition 3.2(3)] and induction to get

B(w, Sn) � {w + u} = B(w, Sn−1) � {w + u} = W(u, Sn−1) ⊆ W(u, Sn). �
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Proposition 3.2. For all n ≥ 3, W(w, Sn)⊕ W(u, Sn) = PG(n,2)\(Sn � {w, u}).
Proof. Clearly, W(w, Sn) ⊕ W(u, Sn) ⊆ PG(n,2)\(Sn � {w, u}). We will prove the
opposite inclusion by induction onn. Thecasen = 3 is left to the reader to verify.

Let n ≥ 4. By the symmetry betweenu andw we may assume thatSn = ψw(Sn−1).
Let z′ ∈ PG(n,2)\(Sn � {w, u}). If z′ ∈ PG(n − 1,2), then by the induction hypothesis,
z′ ∈ W(w, Sn−1) ⊕ W(u, Sn−1) ⊆ W(w, Sn) ⊕ W(u, Sn). Thus we may assume that
z′ /∈ PG(n − 1,2). Hencez := v + z′ ∈ PG(n − 1,2).

We distinguish three cases. Ifz ∈ {w, u} then sincez′ /∈ Sn , weknow z′ �= w + v and
thusz = u andz′ = v + u. Thusz′ = (v + w) + (u + w) ∈ W(w, Sn) ⊕ W(u, Sn).
Secondly, if z ∈ Sn−1 then sincez′ /∈ Sn , we must havez ∈ B(w, Sn−1). Thus
z + w ∈ B(w, Sn−1) ⊆ W(u, Sn−1) ⊆ W(u, Sn). Sincew + v ∈ W(w, Sn−1), we
havez′ = (w + v) + (z + w) ∈ W(w, Sn) ⊕ W(u, Sn). Finally, if z /∈ (Sn−1 � {w, u})
then by induction,z = x + y wherex ∈ W(w, Sn−1) and y ∈ W(u, Sn−1). Therefore
z′ = (x + v)+ y wherex + v ∈ W(w, Sn) andy ∈ W(u, Sn). �
Corollary 3.3. For all n ≥ 3, Sn is complete and w and u are dependable points for Sn .

Proof. To see that bothw andu are dependable, consider any pointz′ /∈ Sn with z′ �= w

and z′ �= u. Then byProposition 3.2, there existx ∈ W(w, Sn) and y ∈ W(u, Sn)

suchthat x + y = z′. Thus x , y ∈ B(z′, Sn). Therefore x ∈ B(z′, Sn)\B(w, Sn) and
y ∈ B(z′, Sn)\B(u, Sn). It is clear from Lemma 3.1that B(w, Sn) � B(u, Sn) and
B(u, Sn) � B(w, Sn). Thus bothu andw are dependable and byTheorem 1.1, Sn is
complete. �

It is easy to verify by induction that #(Sn) = 2	n/2
(n)+2�(n+2)/2� −3. ThusS has size
24(2(n−6)/2)− 3 if n is even and size 16(2(n−5)/2)− 3 if n is odd.
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