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Abstract

Filter stability refers to the correction of an incorrectly initialized filter for a partially

observed stochastic dynamical system with increasing measurements. In this the-

sis, we study the filter stability problem, develop new methods and results for both

controlled and control-free stochastic dynamical systems, and study the implications

of filter stability on robustness of optimal solutions for partially observed stochastic

control problems. We introduce a definition of non-linear stochastic observability

and through this notion of observability, we provide sufficient conditions for when

a falsely initialized filter merges with the correctly initialized filter over time. We

study stability under different notions such as the weak topology, total variation, and

relative entropy. Additionally, we investigate properties of the transition kernel and

measurement kernel which result in stability with an exponential rate of merging.

We generalize our results to the controlled case, which is an unexplored area in the

literature, to our knowledge.

Stability results are then applied to stochastic control problems. Under filter

stability, we bound the difference in the expected cost incurred for implementing an

incorrectly designed control policy compared to an optimal policy and relate filter

stability, robustness, and unique ergodicity of non-linear filters.
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1

Chapter 1

Introduction

1.1 Motivation

In this thesis, we consider stochastic processes that are observed through noisy mea-

surements. We will study both controlled and control-free modes. In the control-free

setup, an observer watches the development of a Markov chain through imperfect or

noisy measurements, but has no influence on the underlying Markov chain. Such mod-

els are known as Partially Observed Markov Processes (POMPs) or Hidden Markov

Models (HMMs). In a controlled model, the observer is now known as a controller or

decision maker (DM) who can influence the development of the system through con-

trol actions. Such models are called Partially Observed Markov Decision Processes

(POMDP).

The goal of the observer or the DM is either to track the hidden state in a POMP

or design a control policy to minimize some expected cost criterion in a POMDP.

While doing this, a standard result in the theory of partially observed processes is

that the DM needs to keep computing the conditional probability measure on the

state given the past information: this measure is called the filter. A further result
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in the field, to be stated explicitly in the paper, is that these computations can be

carried out in a recursive manner which is known as the non-linear filtering equation.

In particular, if {Xn}∞n=0 is a Markov process and {Yn}∞n=0 is a noisy measurement of

Xn, then the process {P (Xn ∈ ·|Y0, · · · , Yn)}∞n=0 itself is a probability measure valued

Markov process.

However, this recursion is dependent on the initial condition of the filter process.

This is the initial belief or distribution the observer has about the starting point of

the state process before the observer has made any measurements. If the initial belief

of the observer does not match the true initial distribution of the state process, we

say that the filter has been incorrectly initialized.

Rarely in practice is the prior selected correctly. Filter stability is a property of

a POMP where, over time, the measurements made by the observer will correct any

incorrectly initialized filter and the observer’s estimate of the state will be accurate.

Filter stability is defined rigorously in Section 1.4.

A notable case in the theory is the linear Gaussian POMP and the associated

Kalman filter. Kalman filtering is very powerful since it allows for the filter update

equation to be finite dimensional, as a Gaussian measure is uniquely characterized by

the mean and the covariance of the associated random variable. In this case, under

suitable controllability and observability assumptions, a standard and very powerful

result is that the Kalman Filter is robust to initialization errors [29].

On the other hand, in general, the filter update equation is rather non-trivial

and the problem of filter stability requires much more sophisticated derivations when

compared with the analysis for the stability of the Kalman Filter. In this thesis, we

are primarily interested in what properties of a POMP and POMDP give rise to filter
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stability. As part of our analysis, we will define when measurements are “informative”

about the underlying state process resulting in stability.

In a POMP the observer is a passive part of the process, the observer simply sees

the measurements and records them. The observer’s presence does not affect the

development of the process. In a POMDP, the DM or controller takes an active role

and at each time stage takes an action that affects the development of the process.

The way the DM maps measurements to control actions is called a control policy.

We also study the stability of the filter in POMDPs, an area which does not have

much work in the current literature. One of the main differences between a POMDP

and a POMP is that a POMP is a Markov chain, while a POMDP is generally not since

the DM’s control policy may depend on past measurements. This complicates the

dependency structure of the POMDP and therefore results from the POMP literature

do not directly apply to the controlled setup. This is perhaps one reason why there

is hardly any study on filter stability for controlled stochastic models, except for the

standard machinery involving the Kalman Filter.

Furthermore, in a POMDP the DM has an objective: to minimize an expected

cost incurred based on the control actions and the state realizations. Filter stability

then plays a crucial role in the DM making optimal decisions. In many stochastic

control problems, the filter is a sufficient statistic for an optimal control policy. If

the DM has an incorrectly initialized filter, the DM may be selecting what it believes

to be the optimal control action, but it has the wrong information and is actually

selecting a very poor control action. It is then crucial that the filter—the DM’s vital

source of information—becomes accurate over time so that the DM can apply good

control actions and achieve a cost close to the optimal cost. This involves a problem
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of robustness in stochastic control, which we show to be closely tied to filter stability.

1.2 Partially Observed Markov Process

The components of a POMP are as follows. Let X ,Y be Polish spaces (that is,

complete, separable, metric) equipped with their Borel sigma fields B(X ) and B(Y).

X will be called the state space, and Y the measurement space.

Given a measurable space (X,B(X )) we denote the space of probability measures

on this space as P(X ). We will denote random variables by capital letters and their

realizations with lower case letters. Further, we will express contiguous sets of random

variables such as Y0, Y1, · · · , Yn with a subscript Y[0,n] indicating the starting and

ending index of the collection. Infinite sequences Y0, Y1, · · · will be expressed as Y[0,∞).

We then define two probability kernels, the transition kernel T and the measurement

kernel Q:

T : X → P(X ) Q : X → P(Y)

x 7→ T (dx′|x) x 7→ Q(dy|x)

where for a set A ∈ B(Y) we write Q(A|x) =
∫
A
Q(dy|x). For these kernel operators,

we can overload the notation to define them as mappings from a space of probability

measures to another space of probability measures as follows

T : P(X )→ P(X ) Q : P(X )→ P(Y)

π(dx) 7→
∫
X
T (dx′|x)π(dx) π(dx) 7→

∫
X
Q(dy|x)π(dx)

In practice, the form of the kernel operator is clear via context if the input is a
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probability measure or an element of the state space. Note that T and Q are time

invariant kernels in a POMP as we study.

A POMP is initialized with a state x0 ∈ X drawn from a prior measure µ on

(X ,B(X )). However, the state is not available at the observer, instead the observer

sees the sequence Yn ∼ Q(dy|Xn). That is, each Yn is a noisy measurement of the

hidden random variable Xn via the measurement channel Q. We then have for any

set A ∈ B(X × Y),

P

(
(X0, Y0) ∈ A

)
=

∫
A

Q(dy|x)µ(dx) (1.1)

and the POMP updates via the transition kernel T : X → P(X )

P ((Xn, Yn) ∈ A|(X, Y )[0,n−1] = (x, y)[0,n−1]) =

∫
A

Q(dy|xn)T (dxn|xn−1) (1.2)

It follows that {(Xn, Yn)}∞n=0 itself is a Markov chain, and we will denote P µ as

the probability measure on Ω = X Z+ × YZ+ , endowed with the product topology

where X0 ∼ µ (this of course means ω ∈ Ω is a sequence of states and measurements

ω = {(xi, yi)}∞i=0). A diagram of the flow of the POMP is seen in Figure 1.1. The nodes

represent random variables, and the arrows are labelled with the kernel that defines

the conditional measure between two random variables. That is, the distribution of

Y1 is fully determined by the realization of X1 and the measurement channel Q, and

the distribution of X2 is fully determined by the realization of X1 and the transition

kernel T .

We now introduce some additional notation that will be useful when dealing with
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X0 X1 X2

Y0 Y1 Y2

T T

Q Q Q

µ · · ·

Figure 1.1: Chain of Implications in POMP

sigma fields rather than random variables directly in the context of conditional prob-

abilities or expectations. Strictly speaking, we have a probability measure P µ on

(X Z+ × YZ+ ,B(X Z+ × YZ+)) where the infinite product space is endowed with the

product topology, which makes each of the product spaces Polish. We denote by FXa,b

the sigma field generated by (Xa, · · · , Xb) and similarly for Y . We also write FXn

for the sigma field generated by Xn. We then have FX0,∞ ∨ FY0,∞ as the sigma field

generated by all state and measurement sequences. We note that we will condition on

random variables or sigma fields interchangeably in the thesis when most convenient.

When we write P µ(X[0,n] ∈ ·) we will be discussing the measure P µ restricted to the

sigma field FX0,n which we will denote P µ|FX0,n . Similarly for some set A ∈ FX0,∞∨FY0,∞

we write P µ((X[0,∞), Y[0,∞)) ∈ A|Y[0,n]) as the conditional measure of P µ with respect

to the sigma field FY0,n, which we denote P µ|FY0,n. We can also consider restricting and

conditioning simultaneously and we use P µ(Xn ∈ ·|Y[0,n]) and P µ|FXn |F
Y
0,n to represent

the same probability measure.
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1.3 The Non-Linear Filter

Definition 1.1. We define the one step predictor as the sequence of conditional prob-

ability measures

πµn−(·) = P µ(Xn ∈ ·|Y[0,n−1]) n ∈ {1, 2, · · · } (1.3)

Definition 1.2. We define the filter as the sequence of conditional probability mea-

sures

πµn(·) = P µ(Xn ∈ ·|Y[0,n]) n ∈ {0, 1, 2, · · · } (1.4)

Calculating the filter or predictor realizations can be performed in a recursive

manner. That is, given the previous filter realization πµn ∈ P(X ) and a new obser-

vation yn+1 ∈ Y we can compute the next filter realization πµn+1 via the filter update

function φ : P(X )× Y → P(X ).

This update can be quite complicated for a general process, however under a

simplifying assumption it is a direct application of Bayes’ theorem. Often in the

literature it is assumed that the measurement channel Q is non-degenerate. That is,

there exists a dominating measure λ ∈ P(Y) and for every x ∈ X , Q(dy|x) � λ.

Note that “�” means absolute continuity, so that for any set A ∈ B(Y) we have

λ(A) = 0 =⇒ Q(A|x) = 0 ∀x ∈ A. Then there exists a conditional probability

density function (pdf) with respect to λ called the likelihood function dQ
dλ

(x, y) =

g(x, y). Then we can define the Bayesian update operator

ψ :P(X )× Y → P(X ) ∪ {0}
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(π(dx), y) 7→


g(x,y)π(dx)∫
X g(x,y)π(dx)

if
∫
X g(x, y)π(dx) > 0

0 else

and we can explicitly write the filter update operator as the composition of the

Bayesian update operator with the transition kernel

πµn+1(dx) = φ(πµn, yn+1)(dx) = ψ(T (πµn), yn+1)(dx)

=
g(x, yn+1)

∫
X T (dx|x′)πµn(dx′)∫

X g(x, yn+1)
∫
X T (dx|x′)πµn(dx′)

(1.5)

where (1.5) is often referred to as the filter update equation in the literature.

1.4 Filter Stability

Since the filter update is a recursive process, it is sensitive to the initial distribution of

X0 which is the starting point of the recursion. Suppose that an observer computes

the non-linear filter assuming that the initial prior is ν, when in reality the prior

distribution is µ. The observer receives the measurements and computes the filter πνn

for each n, but the measurement process is generated according to the true measure

µ. The question we are interested in is that of filter stability, namely, if we have

two different initial probability measures µ and ν, when do we have that the filter

processes πµn and πνn merge in some appropriate sense as n→∞.

In the literature, there are a number of merging notions when one considers stabil-

ity which we enumerate here. Let Cb(X ) represent the set of continuous and bounded

functions from X → R.

Definition 1.3. Two sequences of probability measures Pn, Qn merge weakly if ∀ f ∈
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Cb(X ) we have limn→∞
∣∣∫ fdPn − ∫ fdQn∣∣ = 0.

Definition 1.4. For two probability measures P and Q we define the total variation

norm as ‖P − Q‖TV = sup‖f‖∞≤1

∣∣∫ fdP − ∫ fdQ∣∣ where f is assumed measurable

and bounded with norm 1. We say two sequences of probability measures Pn, Qn

merge in total variation if ‖Pn −Qn‖TV → 0 as n→∞.

Note that merging in total variation implies weak merging since Cb(X ) is a subset

of the set of measurable and bounded functions. We will also utilize the information

theoretic notion of relative entropy (Kullback-Leibler divergence). Relative entropy

is often utilized as a notion of distance between two probability measure as it is

non-negative, although it is not a metric since it is not symmetric.

Definition 1.5.

(i) For two probability measures P and Q we define the relative entropy as D(P‖Q) =∫
log dP

dQ
dP =

∫
dP
dQ

log dP
dQ
dQ where we assume P � Q and dP

dQ
denotes the

Radon-Nikodym derivative of P with respect to Q.

(ii) Let X and Y be two random variables, let P and Q be two different joint mea-

sures for (X, Y ) with P � Q. Then we define the (conditional) relative entropy

between P (X|Y ) and Q(X|Y ) as

D(P (X|Y )‖Q(X|Y )) =

∫
log

(
dPX|Y
dQX|Y

(x, y)

)
dP (x, y)

=

∫ (∫
log

(
dPX|Y
dQX|Y

(x, y)

)
dP (x|Y = y)

)
dP (y) (1.6)

Some notational discussion is in order. For some probability measures such as

P µ(Y[0,n] ∈ ·) or P µ(Xn ∈ ·), it will be convenient to denote the random variable
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inside the measure and take out the set argument. When we take the relative entropy

of such measures, to make the notation shorter, we will drop the “∈ ·” argument and

write D(P µ(Y[0,n])‖P ν(Y[0,n])).

Note that in a conditional relative entropy, we are integrating the logarithm of

the Radon-Nikodym derivative of the conditional measures P (X|Y ) and Q(X|Y ) over

the joint measure of P on (X,Y). The second equality (1.6) shows that this can be

thought of as the expectation of the relative entropy D(P (X|Y = y)‖Q(X|Y = y))

at specific realizations of Y = y , where the expectation is over the marginal measure

of P on Y . When we apply this to the filter, πµn and πνn are realizations of the filter

for specific measurements, therefore when we discuss their relative entropy, we take

the expectation over the marginal of P µ on Y[0,n]. We write this as Eµ[D(πµn‖πνn)]

where D(πµn‖πνn) plays the role of the inner integral in (1.6).

The key relationship between relative entropy and total variation is Pinsker’s

inequality (see e.g., [34, 14, 27]) which states that for two probability measures P and

Q we have that

‖P −Q‖TV ≤

√
2

log2(e)
D(P‖Q) (1.7)

1.4.1 Notions of Stability

Definition 1.6. A filter process is said to be stable in the sense of weak merg-

ing in expectation if for any f ∈ Cb(X ) and any prior ν with µ � ν we have

limn→∞E
µ
[∣∣∫ fdπµn − ∫ fdπνn∣∣] = 0.

Definition 1.7. A filter process is said to be stable in the sense of weak merging P µ

almost surely (a.s.) if there exists a set of measurement sequences A ⊂ YZ+ with P µ
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probability 1 such that for any sequence in A, for any f ∈ Cb(X ) and any prior ν

with µ� ν we have limn→∞
∣∣∫ fdπµn − ∫ fdπνn∣∣ = 0.

Definition 1.8. A filter process is said to be stable in the sense of total variation in

expectation if for any measure ν with µ� ν we have limn→∞E
µ[‖πµn − πνn‖TV ] = 0.

Definition 1.9. A filter process is said to be stable in the sense of total variation P µ

a.s. if for any measure ν with µ� ν we have limn→∞ ‖πµn − πνn‖TV = 0 P µ a.s..

Definition 1.10. A filter process is said to be stable in relative entropy if for any

measure ν with µ� ν we have limn→∞E
µ[D(πµn‖πνn)] = 0.

Definition 1.11. Given f : X → R we define the Lipschitz norm

‖f‖L = sup

{
|f(x)− f(y)|

d(x, y)

∣∣∣∣ d(x, y) 6= 0

}

With BLip := {f : ‖f‖L ≤ 1, ‖f‖∞ ≤ 1} ⊂ Cb(X ) we define the bounded Lipschitz

(BL) metric as ‖P − Q‖BL = supf∈BLip

∣∣∫ fdP − ∫ fdQ∣∣. A system is then said to

be stable in the sense of BL-merging P µ a.s. if we have ‖πµn − πνn‖BL → 0 P µ a.s.

Here we make a cautionary remark about the merging of probability measures

compared to the convergence of a sequence of probability measures to a limit measure.

In convergence, we have some sequence Pn and a static limit measure P and we wish

to show Pn → P under some convergence notion. However, in merging we have two

sequences Pn and Qn which may not individually have limits, but come closer together

for large n in one of the merging notions defined previously.

The distinction is important. Let us assume that X is a finite dimensional real

space and let C0(X ) denote the space of all continuous functions which decay to zero
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as |x| → ∞ under the standard supremum norm. The topological dual space of such

a space of functions is the set of finite signed measures endowed with total variation

[22, Chapter 1] and when the space is compact, merging under the weak-∗ topology for

two sequences of finite measures coincides with the merging notion given in Definition

1.3, that is considering all Cb(X ) functions. Likewise, in Definition 1.3, if Qn were

replaced with a single probability measure (i.e. considering converging instead of

merging), due to Prokhorov’s theorem [6] and resulting tightness, the convergence

notions under C0(X ) and Cb(X ) would still be equivalent. However, in general both

πµn and πνn are time-varying and in this case, as elaborately noted in [15], weak-∗

merging (that is, considering only C0(X ) functions) is strictly weaker than merging

under all Cb(X ) functions (Definition 1.3) as the following example reveals:

Example 1.1. [15, Example 1.1] Consider two sequences of point masses Pn = δn

and Qn = δn+ 1
n

. These measures merge in the weak-∗ sense since they both converge to

the trivial (all zero) measure in the weak-∗ sense. However, there exists a continuous

and bounded function f such that for large n we have
∫
fdPn = 1 but

∫
fdQn = 0,

so Pn and Qn do not merge in the sense of Definition 1.3.

From [15] we have that if X is compact (or if Qn = Q for a fixed probability

measure Q), the merging notions are identical. We note that such subtleties involving

merging notions were elaborately investigated by van Handel [39] who focused on

merging in the bounded Lipschitz norm, Definition 1.11, which is strictly weaker

than Definition 1.7 when the space considered is not compact. In our analysis, we

will consider weak merging as opposed to that in the bounded Lipschitz sense.



1.5. PARTIALLY OBSERVED MARKOV DECISION PROCESS 13

1.5 Partially Observed Markov Decision Process

1.5.1 Definition of a POMDP

To define a POMDP, begin with the state and measurement spaces from the POMP,

(X ,B(X )) and (Y ,B(Y)), but also add an action space U . Redefine the transition

kernel T as

T :X × U → P(X )

(x, u) 7→ T (dx′|x, u)

T defines a regular conditional probability measure on B(X ) given X and U , meaning

that for every fixed x and u, T (·|x, u) is a probability measure and for every fixed

Borel set A : T (A|·, ·) is a measurable function on X × U . Then we have for a set

A ∈ B(X × Y)

P ((X0, Y0) ∈ A) =

∫
A

Q(dy|x)µ(dx) (1.8)

P ((Xn, Yn) ∈ A|(X, Y, U)[0,n−1] = (x, y, u)[0,n−1]) =

∫
A

Q(dy|x)T (dx|xn−1, un−1)

(1.9)

The DM determines its control actions via an admissible control policy γ = {γn}n≥0

which is a sequence of mappings where each γn : Yn+1 × Un → U maps the past and

present measurements y[0,n] and the past control actions u[0,n−1] to a control action

un such that for every n ∈ Z+, un = γn(y[0,n], u[0,n−1]).

Recursively we see u0 is a function of y0 and u1 is a function of y0, y1, and u0.

Yet since u0 is itself a function of y0, we have that u1 is really just a function of



1.5. PARTIALLY OBSERVED MARKOV DECISION PROCESS 14

X0 X1 X2

Y0 Y1 Y2U0

U1

U2

γ0

γ1

γ2

Q Q Q

T Tµ · · ·

Figure 1.2: Chain of Implications in POMDP

y[0,1]. In other words, we can restrict ourselves to considering control policies that are

only a function of y[0,n] and not the past control actions u[0,n−1] without any loss of

generality. We will denote the collection of such admissible control policies as γ ∈ Γ.

A diagram of the development of the POMDP and the chain of dependence of the

random variables is shown in Figure 1.2.

Now, consider the measurable space Ω = X Z+ × YZ+ , endowed with the product

topology, (this of course means ω ∈ Ω is a sequence of states and measurements

ω = {(xi, yi)}∞i=0).

Definition 1.12. For a fixed initial measure µ ∈ P(X ) and a policy γ ∈ Γ, we define

the strategic measure P µ,γ as the probability measure on (Ω,FX[0,∞) ∨F
Y
[0,∞)) such that

i) For all A ∈ B(X × Y) we have

P µ,γ ((X0, Y0) ∈ A) =

∫
A

Q(dy|x)µ(dx) (1.10)
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ii) For every n ≥ 1, for all A ∈ B(X × Y) let un−1 = γn−1(y[0,n−1]) then we have

P µ,γ((Xn, Yn) ∈ A|(X, Y )[0,n−1] = (x, y)[0,n−1]) =

∫
A

Q(dy|x)T (dx|xn−1, un−1)

(1.11)

Remark 1.1. Note that (X, Y )[0,∞ is in general not a Markov chain under P µ,λ as

un−1 depends on the past measurements in equation (1.11).

Given a prior µ ∈ P(X ) and a policy γ ∈ Γ we can then define the filter and

predictor for a POMDP using the strategic measure P µ,λ.

Definition 1.13. We define the one step predictor as the sequence of conditional

probability measures

πµ,γn− (·) = P µ,γ(Xn ∈ ·|Y[0,n−1], U[0,n−1] = γn(Y[0,n−1]))

= P µ,γ(Xn ∈ ·|Y[0,n−1]) n ∈ {1, 2, · · · }

Definition 1.14. We define the filter as the sequence of conditional probability mea-

sures

πµ,γn (·) = P µ,γ(Xn ∈ ·|Y[0,n], U[0,n−1] = γn(Y[0,n−1]))

= P µ,γ(Xn ∈ ·|Y[0,n]) n ∈ {0, 1, 2, · · · }

Remark 1.2. Recall that the U[0,n−1] are all functions of the Y[0,n−1], so condition-

ing on the control actions is not really necessary in the above definitions. Yet this

conditional probability is policy dependent, if we condition on the past actions, this
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conditioning is independent of the policy. This distinction will be important when we

study filter stability for controlled models.

Like a POMP, the filter update is recursive, however now the filter update requires

a control action as well to determine the transition kernel. However, the control action

un is a function of y[0,n] which is already known to the filter at time n, therefore the

filter also has knowledge of un since the control policy is known by the filter. If we

assume the measurement channel is non-degenerate with likelihood function g(x, y)

then we have

πµ,γn+1(dx) = φ(πµ,γn , un, yn+1) = ψ(T (πµn, un), yn+1)(dx)

=
g(x, yn+1)

∫
X T (dx|x′, un)πµn(dx′)∫

X g(x, yn+1)
∫
X T (dx|x′, un)πµn(dx′)

(1.12)

Say a prior µ ∈ P(X ) and a policy γ ∈ Γ are chosen, an observer sees measure-

ments Y[0,∞) generated via the strategic measure P µ,γ. The observer is aware that

the policy applied is γ, but incorrectly thinks the prior is ν 6= µ. The filter stability

problem for a POMDP is then concerned with the merging of πµ,γn and πν,γn as n goes

to infinity. We must then slightly modify our previous definitions of stability of a

POMP to appropriate definitions for a POMDP.

We say a POMDP is stable in any of Definitions 1.6 to 1.10 with respect to a policy

γ if the definition holds with the measure P µ replaced with the strategic measure P µ,γ.

We say the filter process is universally stable in the above definitions if it is stable

for any control policy γ ∈ Γ.
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1.5.2 Types of Control Problems

A POMDP as described above is a well defined stochastic process, but the DM does

not have an objective or purpose. In a stochastic control problem the objective of the

DM is to minimize an expected cost. We include a cost function c : X×U → R+ which

penalizes the DM (or rewards if one wishes to consider a maximization problem) for

their actions at each stage of the problem in relation to the state realization. We can

then consider three different types of control problems

i) The single stage control cost:

J(µ, γ) = Eµ,γ[c(X0, U0)]

ii) The infinite horizon discounted cost problem for some β ∈ [0, 1):

Jβ(µ, γ) = Eµ,γ

[
∞∑
n=0

βnc(Xn, Un)

]

iii) The infinite horizon average cost problem:

J∞(µ, γ) = lim sup
N→∞

1

N
Eµ,γ

[
N−1∑
n=0

c(Xn, Un)

]

For each type of problem, we can consider the optimal cost for a given prior µ:

J∗(µ) = inf
γ∈Γ

J(µ, γ)

with similar definitions for J∗β , J
∗
∞.
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1.5.3 Robustness

Say γν is the optimal control policy with respect to the prior ν, that is J∗β(ν) =

Jβ(ν, γν). However, suppose that the true prior is µ, but a controller believes the

prior is ν. Then the controller will design the control policy γν and apply it to the

system and incur a cost Jβ(µ, γν). The robustness problem we consider here studies

the difference between J∗β(µ) and Jβ(µ, γν).

1.6 Literature Review

Filter stability is a classical problem and we refer the reader to [10] for a comprehensive

review. As discussed in [10], filter stability arises via two separate mechanisms:

1. The transition kernel is in some sense sufficiently ergodic, forgetting the initial

measure and therefore passing this insensitivity (to incorrect initializations) on

to the filter process.

2. The measurement channel provides sufficient information about the underlying

state, allowing the filter to track the true state process.

A number of works focus on the first of the two mechanisms, see [20]. By ergodicity

here, we mean that the successive applications of the transition kernel T brings to

any two different priors closer together with increasing time.. These results usually

rely on some form of mixing, pseudo-mixing, or a similar condition on the transition

kernel. These results are often paired with a study on the Hilbert metric to deduce

filter stability. Results in [8], [13] study the signal to noise ratio to establish sufficient

conditions for filter stability. Many results in the literature impose a non-degeneracy
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condition on the measurement channel, see [10, 39, 17] and utilize the likelihood

function g(x, y).

One benefit of studying filter stability through the ergodic properties of the tran-

sition kernel is these results often lead to an exponential rate of merging. We discuss

such results in Chapter 4. An exponential rate of merging is useful since it allows

for an explicit rate of merging to the correct filter; just asymptotic stability may not

be strong enough for finite horizon and a class of infinite horizon discounted cost

problems.

In Chapters 2 and 3 our primary focus is on the latter of the two mechanisms

mentioned above. The question of interest is to find sufficient conditions for “observ-

ability”: some property of the measurements that implies filter stability, along the

same spirit as that of the Kalman Filter in the linear case. Thus, we seek to define a

notion of observability for non-linear controlled and control-free stochastic dynamical

systems. The method adopted in this paper sees its origins in Chigansky and Liptser

[9] and a series of papers by Van Handel [36, 37, 39]. Chigansky and Liptser were not

interested in proving full stability, arguing that such results usually rely on ergodicity

conditions (i.e. mechanisms of type 1). Instead, they focused on informative observa-

tions for a specific continuous function f , rather than over all continuous functions in

the criterion of weak merging. Nonetheless, [9, Equation 1.7] captures the essence of

our definition of one step observability. The idea is to express a continuous function

f(x) by integrating a measurable function g(y) over the conditional distribution for

Y given X = x. That is, consider the functional S(g)(x) 7→
∫
Y g(y)Q(dy|x). We

wish to take a continuous function f and solve for a measurable function g such that

f ≈ S(g).
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A fundamental result which pairs with observability is that of Blackwell and Du-

bins [5], an implication of which Chigansky and Liptser independently arrived at.

Blackwell and Dubins use martingale convergence theorem to show that if P and Q

are two measures on a fully observed stochastic process {Xn}∞n=0 with P � Q, then

the conditional distributions on the future based on the past merge in total variation

P a.s., that is

‖P (X[n+1,∞) ∈ ·|X[0,n])−Q(X[n+1,∞) ∈ ·|X[0,n])‖TV → 0 P a.s.

In [37], van Handel introduces a definition of observability for POMP. Namely, a

system is observable if every prior results in a unique probability measure on the

measurement sequences, P µ|FY0,∞ = P ν |FY0,∞ =⇒ µ = ν. In [39], van Handel extends

these results to non-compact state spaces, where uniform observability is introduced.

Given a uniformity class G ⊂ Cb(X ), for two measures P,Q define ‖P − Q‖G =

supg∈G
∣∣∫ gdP − ∫ gdQ∣∣. A filtering model is G-uniformly observable if:

‖P µ(Yn|Y[0,n−1])− P ν(Yn|Y[0,n−1])‖TV → 0 P µ a.s. (1.13)

=⇒

‖πµn − πνn‖G → 0 P µa.s. (1.14)

If G is the uniformly bounded Lipschitz functions, the POMP is simply called uni-

formly observable and ‖·‖G is the bounded Lipschitz distance. This condition is quite

difficult to prove in itself, and the question of “informative measurements” is finding

sufficient conditions for uniform observability to hold.

The result of Blackwell and Dubins [5] pairs with uniform observability, in that
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(1.13) directly follows from Blackwell and Dubins. Then uniform observability would

imply filter stability in bounded Lipschitz distance [36]. van Handel proves this in

[36], however the author only studied the measurement channel where Yn = f(Xn) +

Zn where f−1 is uniformly continuous and Zn must have an everywhere non-zero

characteristic function (e.g. a Gaussian distribution) and so the results cannot be

easily applied to other system models.

For a compact state space, uniform observability and observability are equivalent

notions [39]. We also note that for a finite state space with a non-degenerate measure-

ment channel, stability can be fully characterised via observability and a detectability

condition [37] , [40, Theorem V.2] or [11, Theorems 2.7 and 3.1].

In this thesis we study a number of different stability notions introduced in Defi-

nition 1.6-1.10. Note that observability only implies weak merging almost surely, and

for the discrete time case as studied here, observability only implies weak merging

of the predictor almost surely, not the filter directly. Methods are then needed to

extend observability to imply more stringent notions of stability. A useful tool is the

condition discovered by Kunita [28] and derived in full in [10] which states a necessary

and sufficient condition for the merging of the filter in total variation in expectation

based on comparing the sigma fields FY0,∞ and
⋂
n≥0FXn,∞ ∨ F

Y
0,∞. That is the filter

merges in total variation in expectation if and only if:

Eν [
dµ

dν
(X0)|FY0,∞] = Eν [

dµ

dν
(X0)|

⋂
n≥0

FXn,∞ ∨ FY0,∞] P µ a.s. (1.15)

Unfortunately, as first observed in [4], Kunita later went on to incorrectly assume
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that the order of operators could be changed so that:

⋂
n≥0

FXn,∞ ∨ FY0,∞ = FY0,∞ ∨

(⋂
n≥0

FXn,∞

)

This however is not true, but this mistake does not affect the earlier insight of Kunita’s

work nor the results we will use in this thesis.

Relative entropy as a measure of discrepancy between the true filter and the incor-

rectly initialized filter is studied by Clark, Ocone, and Coumarbatch in [12]. Here they

consider the filtering problem in continuous time with the associated non-degeneracy

assumptions. The authors establish the relative entropy of the true filter and the

incorrect filter as a supermartingale. The paper does not establish convergence to

zero, however. A notable setup where actual convergence (of the relative entropy

difference) to zero is established is the (rather specific) Beneš filter studied in [33].

Robustness as a general concept does not have a singular definition in the litera-

ture. Robustness problems study when the controller has the incorrect system model,

or has uncertainty about the specifics of the system model [3]. In the later scenario,

many works assume the incorrect model satisfies some relative entropy or total varia-

tion bound with the true model. The goal is then to design a controller which works

well over all the models in this set of possible system models. The approach taken is

to treat the system as a game theory problem where the controller is the minimizer

and the uncertainty is the maximizer [41].

However, these problems are different form what we study in that the DM is

“aware” they have the wrong system specifications and have some limited idea of

what the possible mdoels may be. They design a control policy with this in mind and

consciously plan their policy to perform decently well over all the uncertain possible
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system models. However, in the robustness problem as we study here the DM is

blindly applying control as if it has the correct system model. This is similar to the

results in [26] where the controller has the wrong prior and acts as if it were the true

prior. We in fact use these results in Chapter 5, however these results show that if

the priors merge, the robustness difference goes to zero. However, it is not studied

how this prior merging is accomplished. In our problem, we start with two disparate

priors µ and ν and filter stability brings about the required merging.

1.7 Organization of Thesis

In Chapter 2 we study filter stability in (control-free) POMPs. We provide a new ob-

servability definition characterized by the conditional measurement channels Y[n,n+N ]|Xn

which is a sufficient condition for the weak merging of the predictor. We then pro-

vide conditions on the measurement channel and transition kernel to extend to filter

stability and stability in total variation and relative entropy.

In Chapter 3 we adapt our control-free results to POMDPs. Here, an important

distinction with the control-free setup is that, while the one step observability applies

almost identically, the N-step observability does not apply in a policy independent

sense. The measurement channel Yn|Xn ∼ Q(dy|x) is unaffected by control actions,

hence one step observability still holds. However, due to the past dependence and

time variance of control actions the channel Y[n,n+N ]|Xn cannot be utilized to achieve

stability. However, if stability can be achieved via the one step channel than we

provide similar conditions leading to merging in the weak sense, in total variation

and in relative entropy.

In Chapter 4 we achieve stability not by observability of the measurement channel,
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but by studying the filter update as a contraction. Under suitable conditions involving

the Dobrushin coefficient of the transition kernel T and measurement kernel Q, we

show the filter merges in total variation in expectation with an exponential rate of

merging.

In Chapter 5 we apply our stability results to study the cost a DM incurs for

utilizing an incorrectly designed control policy compared to an optimal control policy.

For the single stage cost problem and the discounted cost problem, under exponential

filter stability we can bound the robustness difference. For the average cost problem,

under total variation merging in expectation we show the robustness difference is

determined solely by the maximum difference of the optimal cost operator J∗∞(µ)

under different priors.

1.8 Contributions

A number of studies exist in the literature which define observability, [37], [39], [17].

However, these definitions are either difficult to compute for typical systems or are so

specific in their application to one system model that they cannot be easily applied in

general. Our definition of observability given in Definition 2.1 is computable for a va-

riety of systems as we show in Section 2.4. More importantly, the definition presented

here leads to very general convergence results. Figure 2.1 efficiently summarizes our

results in Chapter 2.

Furthermore, in the literature there are various notions of stability that are not

always compared directly. One author’s notion of filter stability may be different

than another’s and no easy comparison between the two may be present. By analysing

weak, total variation, and relative entropy merging as well as the implications between
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them we provide a rather unified presentation of filter stability.

In controlled environments, while filter stability is understood for the Kalman

filter and its simple recursive structure, on the general non-linear filtering recursions

we are not aware of any studies. In particular, research results in the non-linear

filtering literature for POMPs are not directly adapted to controlled environments.

As we see in Section 3.3, the dependency structure of a POMDP can significantly

complicate results that hold in a POMP and thus the adaptation of results is not

always possible.

As we review in Chapter 4, most results on exponential filter stability in the

literature rely on the Hilbert metric approach and the mixing condition. This is useful

as the Hilbert metric is a projective distance and thus the non-linear normalizing term

in the filter recursion can be ignored. However, mixing in the sense of the Hilbert

metric is a very restrictive assumption to place on the filter update function, and

severely limits the applicable system models for this approach. We are the first to

establish, to our knowledge, the bound on the Bayesian update utilizing the Dobrushin

coefficient, and arrive at conditions that are more widely applicable than mixing.

Implementing an incorrectly designed policy in a true system is studied in [26],

however these results show that the robustness cost goes to zero as the priors merge,

but not what happens when two disparate priors are implemented. Aside from this

result, the general question of the difference in expected cost between an optimal

policy and an incorrectly designed policy is not well known. We show that under

filter stability, the merging filters act as new priors for a restarted control problem

that can be analysed in light of [26]. For the discounted cost problem, we present a

bound which depends on the exponential rate of filter stability α, the discount factor
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β, and the maximum distance of the optimal cost operator J∗β(µ) under different

priors. For the average cost problem, we show the robustness difference is upper

bound by the maximum difference in J∗∞(µ) under different priors.

Note that the filter itself and the measurements {(πµn, Yn)}∞n=0 can be thought of

as a stochastic process taking values in the space of probability measures and the

measurement space (P(X )×Y). Under mild conditions, optimal control policies may

be taken to be functions of only the filter realization, and under optimal control,

{(πµ,γµn , Yn)}∞n=0 is a Markov chain [31]. We say the filter process is uniquely ergodic

if the transition kernel of this process admits a unique invariant measure that is a

probability measure on the space of probability measures P(X ).

If the filter proces is uniquely ergodic, then under additional mild conditions

on where the priors may start from J∗∞(µ) = J∗∞(ν) for every such prior [24] and

the robustness difference for an average cost problem is 0. Therefore, our robustness

result establishes explicitly the relations between filter stability, robustness and unique

ergodicity, and hopefully will generate further interest in addressing the problem of

unique ergodicity for controlled non-linear filters.
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Chapter 2

Filter Stability in Control-Free Environments

2.1 Introduction

In this chapter, we study filter stability in a POMP. As mentioned in the literature

review, filter stability may arise, as is the case for the celebrated Kalman Filter

[39], due to the informative nature of the measurements Yn in relation to the hidden

process Xn. We show that this informative nature is captured by our definition

of observability in Definition 2.1. There exist other notions of observability in the

literature, however these are either difficult to verify for most problems, or are so

functionally abstract that they lack application expect in specific system structures.

A POMP has a relatively simple dependency structure, and as such conditional

probability measures can be manipulated easily in equations due to the conditional

Markovian independence of random variables. As we will later see, POMDPs have a

more complicated dependency structure that may violate some of the key properties

used in the proof of Theorem 2.1. We will revisit these properties later to see what

results carry easily from the POMPs to POMDPs and which do not.
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Figure 2.1: Proof Program and Flow of Ideas and Conditions for Filter Stability

Observability and the dependency structure of the POMP result in the weak merg-

ing of the predictor almost surely, and not stability of the filter directly. To extend

to weak merging of the filter as well as more stringent notions of stability, conditions

must be placed on the measurement channel or the transition kernel. A number of

such implications are studied throughout the chapter to relate weak merging, total

variation, and relative entropy. These are summarized in Figure 2.1. The dashed

lines represent implications that are always true, and the solid lines are labelled with

the theorems and assumptions that prove the implication.
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2.2 Predictor Stability

We define observability as follows:

Definition 2.1.

(i) [One Step Observability] A POMP is said to be one step observable if for every

f ∈ Cb(X ), ε > 0, ∃ a measurable and bounded function g : Y → R such that

∥∥∥∥f(·)−
∫
Y
g(y1)Q(dy1|X1 = ·)

∥∥∥∥
∞
< ε

(ii) [N Step Observability] A POMP is said to be N step observable if for every

f ∈ Cb(X ), ε > 0, ∃ a measurable and bounded function g : YN → R such that

∥∥∥∥f(·)−
∫
YN

g(y[1,N ])P (dy[1,N ]|X1 = ·)
∥∥∥∥
∞
< ε

(iii) [Observability] A POMP is said to be observable if it is N step observable for

some finite N ∈ N.

Remark 2.1. One step observability is the specific case of N step observability when

N = 1. However, it is unique in that the distribution of Y1|X1 is determined only

by the measurement channel Q, whereas the distribution of Y[1,n]|X1 is determined by

both the measurement channel Q as well as the transition kernel T . In a POMP this

distinction is not very important since Xn+1|Xn ∼ T (·|Xn = xn) is the same for every

time index n. However once we introduce control, this will no longer hold and in most

control problems one step observability is the only workable definition to achieve filter

stability.
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Theorem 2.1. Let µ� ν and let Definition 2.1 (iii) be satisfied. Then πµn− and πνn−

merge weakly as n→∞, P µ a.s.

Proof. Fix any f ∈ Cb(X ). We wish to show ∀ε > 0,∃N such that ∀n > N, |
∫
fdπµn−−∫

fdπνn−| < ε. By assumption of the model being N ′ step observable, we can find

some measurable and bounded function g such that

f̃(x) =

∫
YN′

g(y[1,N ′])P
µ(dy[1,N ′]|X1 = x) ‖f − f̃‖∞ <

ε

3

Then we have for any n ∈ N

∣∣∣∣∫ fdπµn− −
∫
fdπνn−

∣∣∣∣ ≤ ∣∣∣∣∫ f̃dπµn− −
∫
f̃dπνn−

∣∣∣∣+

∣∣∣∣∫ (f − f̃)dπµn−

∣∣∣∣+

∣∣∣∣∫ (f − f̃)dπνn−

∣∣∣∣
≤
∣∣∣∣∫ f̃dπµn− −

∫
f̃dπνn−

∣∣∣∣+
2

3
ε

Let us now focus in on the expressions

∫
X
f̃(x)πµn−(dx) =

∫
X

∫
YN′

g(y[1,N ′])P
µ(dy[1,N ′]|X1 = xn)P µ(dxn|Y[0,n−1])∫

X
f̃(x)πνn−(dx) =

∫
X

∫
YN′

g(y[1,N ′])P
µ(dy[1,N ′]|X1 = xn)P ν(dxn|Y[0,n−1])

Now, the conditional channel Y[n,n+N ′−1]|Xn has a few important properties. Firstly,

P µ(Y[1,N ′] ∈ ·|X1 = x) = P µ(Y[n,n+N ′−1] ∈ ·|Xn = x)

for any x ∈ X and any n ∈ N; this demonstrates that the conditional channel is time
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invariant. Secondly, the prior is irrelevant conditioned on Xn = x therefore

P µ(Y[n,n+N ′−1] ∈ ·|Xn = x) = P ν(Y[n,n+N ′−1] ∈ ·|Xn = x)

for any x ∈ X and any n ∈ N. Thirdly, Y[n,n+N ′−1]|Xn is conditionally independent

of Y[0,n−1] therefore

P µ(Y[n,n+N ′−1] ∈ ·|Xn = x) = P µ(Y[n,n+N ′−1] ∈ ·|Xn = x, Y[0,n−1] = y[0,n−1])

for any x ∈ X , y[0,n−1] ∈ Yn and any n ∈ N. Putting these together and applying the

chain rule for conditional probability we have

∫
X
f̃(x)πµn−(dx) =

∫
X

∫
YN′

g(y[n,n+N ′−1])P
µ(dy[n,n+N ′−1]|xn, Y[0,n−1])P

µ(dxn|Y[0,n−1])

=

∫
YN′

g(y[n,n+N ′−1])P
µ(dy[n,n+N ′−1]|Y[0,n−1])∫

X
f̃(x)πνn−(dx) =

∫
YN′

g(y[n,n+N ′−1])P
ν(dy[n,n+N ′−1]|Y[0,n−1])

By assumption µ � ν and therefore P µ|FY0,∞ � P ν |FY0,∞ . By the result of Blackwell

and Dubins [5] we have that P µ(Y[n,n+N ′−1] ∈ ·|Y[0,n−1]) and P ν(Y[n,n+N ′−1] ∈ ·|Y[0,n−1])

merge in total variation P µ a.s. as n→∞. Define g̃ = g
‖g‖∞ . Then we can find an N

such that for all n > N we have

∣∣∣∣∫
YN′

g̃(y[n,n+N ′−1])P
µ(dy[n,n+N ′−1]|Y[0,n−1])−

∫
YN′

g̃(y[n,n+N ′−1])P
ν(dy[n,n+N ′−1]|Y[0,n−1])

∣∣∣∣
≤ ε

3‖g‖∞
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therefore for n > N we have

∣∣∣∣∫
YN′

g(y[n,n+N ′−1])P
µ(dy[n,n+N ′−1]|Y[0,n−1])−

∫
YN′

g(y[n,n+N ′−1])P
ν(dy[n,n+N ′−1]|Y[0,n−1])

∣∣∣∣
=‖g‖∞

∣∣∣∣∫
YN′

g̃(y[n,n+N ′−1])P
µ(dy[n,n+N ′−1]|Y[0,n−1])−

∫
YN′

g̃(y[n,n+N ′−1])P
ν(dy[n,n+N ′−1]|Y[0,n−1])

∣∣∣∣
≤‖g‖∞

1

3‖g‖∞
ε =

1

3
ε

and therefore for every ε > 0, we have an N such that for all n > N we have

∣∣∣∣∫ fdπµn− −
∫
fdπνn−

∣∣∣∣ ≤ 1

3
ε+

2

3
ε = ε

Remark 2.2. The question may arise of why work with the predictor first instead of

considering the stability of the filter directly. One of the key steps is that P µ(Y[n,n+N ′−1] ∈

·|Y[0,n−1]) and P ν(Y[n,n+N ′−1] ∈ ·|Y[0,n−1]) merge in total variation P µ a.s. as n→∞.

To achieve this in a POMP, we apply the theorem of Blackwell and Dubins to the

measurement process {Yn}∞n=0. However, the theorem of Blackwell and Dubins is fun-

damentally about predictive measures of the future given the past, and hence only

directly implies stability results for the predictor and not the filter immediately.

Therefore, informative measurements alone imply the weak merging of the pre-

dictor almost surely. However, we would like to consider total variation merging of

the predictor, and this will require an assumption on the transition kernel of the

underlying Markov process.

Assumption 2.1. Let our state space X , which is a complete, separable, metric

space by assumption, have metric d. Assume T (·|x) is absolutely continuous with
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respect to a dominating σ-finite measure λ measure for every x ∈ X and denote the

resulting pdf as t(·|x). Further, assume the family {t(·|x)}x∈X is uniformly bounded

and equicontinuous. That is for every x′ ∈ X and every ε > 0, we can find a δ > 0

such that if d(y, x′) < δ we have that |t(y|x)− t(x′|x)| < ε for every x ∈ X .

Lemma 2.1. Let there exist some measure µ̄ such that T (·|x)� µ̄ for every x ∈ X .

Then we have that πµn−, π
ν
n− � µ̄ for every n ∈ N.

Proof. For all n ≥ 1 we have

πµn−(A) =

∫
X
T (A, x)πµn−1(dx) =

∫
X

∫
A

dT (·|x)

dµ̄
(a)µ̄(da)πµn−1(dx)

=

∫
A

(∫
X

dT (·|x)

dµ̄
(a)πµn−1(dx)

)
µ̄(da)

where we have applied Fubini’s theorem in the final equality. Therefore πµn− is

absolutely continuous with respect to µ̄ for every n ≥ 1.

Lemma 2.2. Let Assumption 2.1 hold and let fµn− denote the density function of πµn−.

Fix any sequence of measurements y[0,∞) and denote the collection of probability den-

sity functions F µ = {fµn−|n ∈ N},F ν = {f νn−|n ∈ N}. Then F µ,F ν are uniformly

bounded equicontinuous families.

Proof. As we see from Lemma 2.1,

fµn−(xn) =
dπµn−
dλ

(xn) =

∫
X
t(xn|xn−1)πµn−1(dxn−1)

Where t is the pdf of the transition kernel with respect to our dominating measure

λ. We require ∀ε > 0, x∗ ∈ X ∃ δ > 0 such that ∀ d(x, x∗) < δ, ∀n ∈ N we have

|fµn−(x)− fµn−(x∗)| < ε. By Assumption 2.1, clearly fµn− is uniformly bounded since t
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is uniformly bounded. Then, for any ε > 0, ∀x∗ ∈ X we can find a δ > 0 such that

|t(x2|x1)− t(x∗|x1)| < ε when d(x2, x
∗) < δ. Now, assume d(x2, x

∗) < δ, we have

|fµn−(x2)− fµn−(x∗)| =
∣∣∣∣∫
X
t(x2|x1)− t(x∗|x1)πµn−(dx1)

∣∣∣∣
≤
∫
X
|t(x2|x1)− t(x∗|x1)|πµn−(dx1) ≤ ε

which proves that F µ and F ν are uniformly bounded and equicontinuous families.

Theorem 2.2. Let Assumption 2.1 hold. If πµn− and πνn− merge weakly P µ a.s., then

‖πµn− − πνn−‖TV → 0, P µ a.s.

Proof. By assumption we have a set of measurement sequences B ⊂ YZ+ with

P µ(B) = 1 such that for every measurement sequence in B we have the predictor

is stable in the weak sense along this measurement sequence. Choose any y[0,∞) ∈ B

and fix this measurement sequence for the remainder of the proof. Via Lemma

2.1, and 2.2, F µ and F ν are uniformly bounded and equicontinuous families. Let

F µ−ν = {fn|fn = fµn−− f νn−}, then the sequence {fn}∞n=1 is a uniformly bounded and

equicontinuous class of integrable functions. As in the proof of [30, Lemma 2], now

pick a sequence of compact sets Kj ⊂ X such that Kj ⊂ Kj+1. By the Arzela-Ascoli

theorem [35], for any subsequence we can find further subsequences fnjk
such that

lim
k→∞

sup
x∈Kj

|f
njk

(X)− f j(x)| = 0

for some continuous function f j : Kj → [0,∞). Via the Kj being nested, we can

have {fnj+1
k
} be a subsequence of {fnjk}, and therefore f j+1 = f j over Kj. Then define

the function f̃ on X by f̃(x) = f j(x), x ∈ Kj. Using Cantor’s diagonal method, we

can find an increasing sequence of integers {mi} which is a subsequence of {njk} for
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every j. Therefore

lim
i→∞

fmi(x) = f̃(x) ∀x ∈ X

and the convergence is uniform over each Kj and f̃ is continuous. Now, fmi converges

weakly to the zero measure by assumption, and via uniform convergence for any Borel

set B we have ∫
B
fmi(x)dx→

∫
B
f̃(x)dx,

i.e. set-wise convergence. Yet this implies weak convergence, so f̃ = 0 almost every-

where, yet f̃ is continuous so it is 0 everywhere.

Now, via Prokhorov’s theorem (Theorem 8.6.2 in [6]) we have that F µ−ν is a tight

family. Therefore, for every ε > 0 we can find a compact set Kε such that

|πµn− − πνn−|(X \Kε) < ε ∀ n ∈ N.

then we have

lim
i→∞
‖πµmi− − π

ν
mi−‖TV ≤ lim

i→∞
|πµmi− − π

ν
mi−|(X \Kε) + |πµmi− − π

ν
mi−|(Kε)

≤ lim
i→∞

sup
‖g‖∞≤1

∣∣∣∣∫
Kε

g(x)fmi(x)dx

∣∣∣∣+ ε

≤ lim
i→∞

sup
‖g‖∞≤1

∣∣∣∣∫
Kε

g(x)(f̃ − fmi)(x)dx

∣∣∣∣+

∣∣∣∣∫
Kε

g(x)f̃(x)dx

∣∣∣∣+ ε

≤ lim
i→∞
‖f̃ − fmi‖∞λ(Kε) + ε

since we have already argued f̃ = 0. Now, over the compact set Kε, fmi converges to

f̃ uniformly, therefore ∃N such that ∀k > N , ‖f̃ − fmk‖∞ < ε
λ(Kε)

. We then conclude
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that

lim
i→∞
‖πµmi− − π

ν
mi−‖TV = 0

Thus, for every subsequence of {fn}∞n=1, we can find a subsequence that converges in

total variation, which implies that the original sequence converges in total variation.

2.3 Filter Stability

As we saw in Theorem 2.1, observability alone only results in predictor stability. Some

assumptions and further analysis is required to extend the predictor stability results

to the filter itself.

2.3.1 Weak Merging

Here we will utilize results from [25]. This paper was concerned with a different topic

than filter stability, namely the weak Feller property of the “filter update” kernel.

That is, one can view the filter πµn and the measurement Yn as its own Markov

chain {(πµn, Yn)}∞n=0 which takes values in P(X )× Y . The filter update kernel is the

transition kernel of this Markov chain. We will not study this kernel, but some of the

analysis in [25] is useful in providing concise arguments to connect the filter to the

predictor.

Assumption 2.2. The measurement channel Q is continuous in total variation. That

is, for any sequence an → a ∈ X we have ‖Q(·|an)−Q(·|a)‖TV → 0 or in other words

‖P (Y0 ∈ ·|X0 = an)− P (Y0 ∈ ·|X0 = a)‖TV → 0.
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Theorem 2.3. Let Assumption 2.2 hold. If the predictor merges weakly P µ a.s., then

the filter merges weakly in expectation.

Proof. Begin by assuming that the predictor merges weakly almost surely. As is

argued in [25], one can view the filter πµn as a function of πµn−1 (the previous filter)

and the current observation Yn = yn, that is πµn = φ(πµn−1, yn). Pick any continuous

and bounded function f , we have

Eµ

[∣∣∣∣∫
X
f(x)πµn(dx)−

∫
X

f(x)πνn(dx)

∣∣∣∣]
=Eµ

[
Eµ

[∣∣∣∣∫
X
f(x)φ(πµn−1, yn)(dx)−

∫
X

f(x)φ(πνn−1, yn)(dx)

∣∣∣∣∣∣∣∣Y[0,n−1]

]]
(2.1)

Now, define the set I+(y[0,n−1]) ⊂ Y as:

I+(y[0,n−1]) =

{
yn ∈ Y

∣∣∣∣∫
X
f(x)φ(πµn−1, yn)(dx) >

∫
X

f(x)φ(πνn−1, yn)(dx)

}

where the argument y[0,n−1] is the sequence on which the previous filters πµn−1 and

πνn−1 are realized. Define the complement of this set as I−(y[0,n−1]). Then for every

fixed realization y[0,n−1] we can break the inner expectation (which is an integral) into

two parts and with the appropriate sign, drop the absolute value showing the inner

conditional expectation of (2.1) is equivalent to

Eµ

[
1I+(y[0,n−1])

(∫
X
f(x)φ(πµn−1, yn)(dx)−

∫
X
f(x)φ(πνn−1, yn)(dx)

)∣∣∣∣Y[0,n−1]

]
(2.2)

−Eµ

[
1I−(y[0,n−1])

(∫
X
f(x)φ(πµn−1, yn)(dx)−

∫
X
f(x)φ(πνn−1, yn)(dx)

)∣∣∣∣Y[0,n−1]

]
(2.3)
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Let us focus for now in the term (2.2). We can add and subtract

Eν [1I+(y[0,n−1])

∫
X
f(x)φ(πνn−1, yn)(dx)|Y[0,n−1]] (2.4)

to (2.2) and we have

Eµ

[
1I+(y[0,n−1])

∫
X
f(x)φ(πµn−1, yn)(dx)

∣∣∣∣Y[0,n−1]

]
−Eν

[
1I+(y[0,n−1])

∫
X
f(x)φ(πνn−1, yn)(dx)

∣∣∣∣Y[0,n−1]

]
+Eν

[
1I+(y[0,n−1])

∫
X
f(x)φ(πνn−1, yn)(dx)

∣∣∣∣Y[0,n−1]

]
−Eµ

[
1I+(y[0,n−1])

∫
X
f(x)φ(πνn−1, yn)(dx)

∣∣∣∣Y[0,n−1]

]

terms 3 and 4 have the same inner argument, which is a bounded and measur-

able function of Yn. Therefore the difference of these terms is upper bound by

‖f‖∞‖P µ(Yn|Y[0,n−1])−P ν(Yn|Y[0,n−1])‖TV which decays to zero by Blackwell Dubins

[5].

For the first two terms, the prior measure in the conditional expectation (i.e. Eµ

or Eν) and the filter argument in φ (i.e πµn−1 or πνn−1) agree within each term, hence

we can apply [25, Equation 4]. We rewrite the difference of these as:

∫
X
f(x)Q(I+(y[0,n−1])|x)πνn−(dx)−

∫
X
f(x)Q(I+(y[0,n−1])|x)πµn−(dx) (2.5)

where f(·)Q(I+(y[0,n−1]|·) : X → R. We can then consider the family of functions

F = {f(·)Q(I+(y[0,n−1]|·)} indexed by an integer n and an infinite sequence y[0,∞).

The family is uniformly bounded by ‖f‖∞ <∞, and by assumption 2.2 the family is
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equicontinuous. Then (2.5) is less than

sup
f̃∈F

∣∣∣∣∫
x

f̃(x)πµn−(dx)−
∫
X

f̃(x)πνn−(dx)

∣∣∣∣
by [18, Corollary 11.3.4] we have that the above goes to zero as n→∞.

Therefore the limit of (2.2) is zero, and by a similar argument that same can be

said for (2.3). Both are upper bound by ‖f‖∞ ≤ ∞ hence dominated convergence

theorem can be applied to state that the limit of (2.1) is 0.

Therefore, with a small continuity assumption on the transition kernel, we can

extend the weak merging of the predictor to the filter. For total variation merging,

we will discover that the merging of the filter and predictor are actually equivalent.

We will demonstrate this by studying the structure of the Radon Nikodym derivatives

and connections with different limiting sigma fields.

2.3.2 Radon Nikodym Derivatives For the True and False Measures

Up to this point, we have established the total variation merging of the predictor a.s.

and the weak merging of the filter in expectation. However, we would like to consider

more stringent notions of stability for the filter, as well as stability in relative entropy

for both the predictor and filter. Under different assumptions specific results can be

developed. For example, [36, Lemma 4.2] establishes the total variation merging of

the filter in expectation from that of the predictor using non-degeneracy. However,

by examining the form of the Radon Nikodym derivative of P µ and P ν restricted and

conditioned on different sigma fields, we can gain significant insight into how these

different notions of stability relate to one another. These results are inspired as a
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generalization of Lemma 5.6 and Corollary 5.7 in [38], or a similar derivation in the

introduction of [10], which establish the specific form of dπµn
dπνn

.

Lemma 2.3. Assume µ� ν. For any sigma field G ⊆ FX0,∞ ∨ FY0,∞ we have:

dP µ|G
dP ν |G

= Eν

[
dµ

dν
(X0)

∣∣∣∣G] P µ a.s.

Proof. Begin with the largest sigma field, G = FX0,∞∨FY0,∞. Pick any A ∈ FX0,∞∨FY0,∞
we have

Pµ((X[0,∞), Y[0,∞)) ∈ A) = Eµ [1A] = Eµ[Eµ[1A|FX0 ]] =

∫
Eµ[1A|X0 = x0]Pµ(dx0)

=

∫
Eµ[1A|X0 = x0]µ(dx0)

Now, conditioned on X0 = x0 the prior is irrelevant, therefore Eµ[1A|X0 = x0] =

Eν [1A|X0 = x0] and we have:

∫
Eν [1A|X0 = x0]

dµ

dν
(x0)ν(dx0) =

∫
Eν [1A|X0 = x0]

dµ

dν
(x0)P ν(dx0)

= Eν [Eν [1A|FX0 ]
dµ

dν
(X0)] = Eν [Eν [

dµ

dν
(X0)1A|FX0 ]] = Eν [1A

dµ

dν
(X0)]

where dµ
dν

(X0) is FX0 measurable so we can move it inside the conditional expectation.

It follows that

dP µ|FX0,∞∨FY0,∞
dP ν |FX0,∞∨FY0,∞

=
dµ

dν
(X0) = Eν

[
dµ

dν
(X0)

∣∣∣∣FX0,∞ ∨ FY0,∞] P µ a.s.

Now pick some other field G ⊂ FX0,∞ ∨ FY0,∞, pick A ∈ G we have:

Pµ((X∞0 , Y∞0 ) ∈ A) = Eµ[1A] = Eν [
dµ

dν
(X0)1A] = Eν [Eν [

dµ

dν
(X0)1A|G]] = Eν [1AE

ν [
dµ

dν
(X0)|G]]
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Since 1A is G measurable. It follows that

dP µ|G
dP ν |G

= Eν

[
dµ

dν
(X0)

∣∣∣∣G] P µ a.s.

Lemma 2.4. Assume µ � ν. For any two sigma fields G1,G2 ⊂ FX0,∞ ∨ FY0,∞, let

P µ|G1 |G2 represent the probability measure P µ restricted to G1, conditioned on field

G2. We then have

dP µ|G1|G2

dP ν |G1|G2

=
Eν [dµ

dν
(X0)|G1 ∨ G2]

Eν [dµ
dν

(X0)|G2]
P µ a.s.

Proof. For any set A ∈ G1 we have:

P µ((X[0,∞), Y[0,∞)) ∈ A) = Eµ[1A] = Eµ[Eµ[1A|G2]] = Eν [Eµ[1A|G2]
dP µ|G2
dP ν |G2

]

= Eν [Eµ[1A
dP µ|G2
dP ν |G2

|G2]]

= Eν [Eµ[1AE
ν [
dµ

dν
(X0)|G2]|G2]] (2.6)

where we can move
dPµ|G2
dP ν |G2

in between expectations since it is G2 measurable and we

have applied Lemma 2.3 in the final equality.

The Radon Nikodym derivative
dPµ|G1 |G2
dP ν |G1 |G2

is then the unique function (up to dom-

inating sets of measure 0) f such that

Eν [Eµ[1AE
ν [
dµ

dν
(X0)|G2]|G2]] = Eν [Eν [1AfE

ν [
dµ

dν
(X0)|G2]|G2]] (2.7)

we claim that this will be satisfied by f =
Eν [ dµ

dν
(X0)|G1∨G2]

Eν [ dµ
dν

(X0)|G2]
(note the denominator is
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positive P µ a.s.). This claim is proven here

Eν [Eν [1AfE
ν [
dµ

dν
(X0)|G2]|G2]] = Eν [Eν [1A

(
Eν [dµ

dν
(X0)|G1 ∨ G2]

Eν [dµ
dν

(X0)|G2]

)
Eν [

dµ

dν
(X0)|G2]|G2]]

=Eν [Eν [1AE
ν [
dµ

dν
(X0)|G1 ∨ G2]|G2]]

=Eν [Eν [Eν [1A
dµ

dν
(X0)|G1 ∨ G2]|G2]]

where we can move 1A inside the expectation since it is G1 and hence G1 ∨ G2 mea-

surable. Then G2 is a sub-field of G1 ∨ G2 and we can apply the law of iterated

expectations

Eν [Eν [Eν [1A
dµ

dν
(X0)|G1 ∨ G2]|G2]] = Eν [1A

dµ

dν
(X0)] = Eµ[1A]

Lemma 2.5. For any two sigma fields G1,G2 ⊂ FX0,∞ ∨ FY0,∞ we have:

‖P µ|G1|G2 − P ν |G1|G2‖TV =
Eν
[ ∣∣Eν

[
dµ
dν

(X0)|G1 ∨ G2

]
− Eν

[
dµ
dν

(X0)|G2

]∣∣ ∣∣G2

]
Eν
[
dµ
dν

(X0)|G2

] P µ a.s.

Proof. An equivalent way to express total variation as opposed to that presented in

Definition 1.4 is

‖P µ|G1|G2 − P ν |G1|G2‖TV =

∫ ∣∣∣∣dP µ|G1|G2

dP ν |G1|G2

− 1

∣∣∣∣ dP ν |G1|G2

=

∫ ∣∣∣∣∣Eν [dµ
dν

(X0)|G1 ∨ G2]

Eν [dµ
dν

(X0)|G2]
− 1

∣∣∣∣∣ dP ν |G1|G2

via Lemma 2.4. We can then cross multiply which completes the proof.
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For the specific case of the non-linear filter, that is G1 = FXn and G2 = FY0,n, the

results presented above imply the following known results in the literature.

Lemma 2.6. [38, Lemma 5.6] Assume µ� ν. Then we have that πµn � πνn a.s. and

we have

dπµn
dπνn

(x) =
Eν [dµ

dν
(X0)|Y[0,n], Xn = x]

Eν [dµ
dν

(X0)|Y[0,n]]
P µ a.s. (2.8)

Lemma 2.7. [38, Corollary 5.7] Assume µ � γ for some measure γ, then we can

express

‖πµn − πγn‖TV =
Eγ
[∣∣∣Eγ [dµdγ (X0)|Y[0,∞), X[n,∞)]− Eγ [dµdγ (X0)|Y[0,n]]

∣∣∣∣∣∣Y[0,n]

]
Eγ
[
dµ
dγ (X0)

∣∣∣Y[0,n]

] (2.9)

Lemma 2.8. [10, Equation 1.10] The filter merges in total variation in expectation

if an only if

Eν

[
dµ

dν
(X0)

∣∣∣∣ ⋂
n≥0

FY0,∞ ∨ FXn,∞

]
= Eν

[
dµ

dν
(X0)

∣∣∣∣FY0,∞] P ν a.s. (2.10)

In the following sections, we will build on Lemmas 2.3-2.5 to obtain stability results

for the predictor as well as stability results under the relative entropy criterion.

2.3.3 Total Variation Merging

Since our results apply to any general sigma field, not just the fields used in the

analysis of the filter, we can analyse the predictor to establish Lemmas 2.9, 2.10,

and 2.11. We then conclude in Corollary 2.1 that the total variation merging of the

predictor in expectation is equivalent to that of the filter.
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Lemma 2.9. Assume µ� ν. Then we have that πµn− � πµn− P
µ a.s. and we have

dπµn−
dπνn−

(x) =
Eν [dµ

dν
(X0)|Y[0,n−1], Xn = x]

Eν [dµ
dν

(X0)|Y[0,n−1]]
P µ a.s. (2.11)

Proof. These results become clear from Lemma 2.4 when we state the predictor as

P µ restricted to FXn conditioned on FY0,n−1.

Lemma 2.10. Assume µ� γ for some measure γ, then we can express

‖πµn− − π
γ
n−‖TV =

Eγ
[∣∣∣Eγ [dµdγ (X0)|Y[0,∞), X[n,∞)]− Eγ [dµdγ (X0)|Y[0,n−1]]

∣∣∣∣∣∣Y[0,n−1]

]
Eγ
[
dµ
dγ (X0)

∣∣∣Y[0,n−1]

] (2.12)

Proof. By Lemma 2.5 we can write

‖πµn− − π
γ
n−‖TV =

Eγ
[
|Eγ[dµ

dγ
(X0)|Y[0,n−1], Xn]− Eγ[dµ

dγ
(X0)|Y[0,n−1]]|

∣∣∣Y[0,n−1]

]
Eγ
[
dµ
dγ

(X0)
∣∣∣Y[0,n−1]

]
Since Yn is a random function of Xn, we have that σ(Y[0,n−1], Xn) = σ(Y[0,n], Xn).

Further, by the Markov property we have that we have that (X[0,n−1], Y[0,n−1]) are

independent of (X[n+1,∞), Y[n+1,∞)) conditioned on (Xn, Yn) therefore we can state

Eγ[
dµ

dγ
(X0)|Y[0,n−1], Xn] = Eγ[

dµ

dγ
(X0)|Y[0,∞), X[n,∞)]

Lemma 2.11. The predictor merges in total variation in expectation if and only if

Eν

[
dµ

dν
(X0)

∣∣∣∣ ⋂
n≥1

FY0,∞ ∨ FXn,∞

]
= Eν

[
dµ

dν
(X0)

∣∣∣∣FY0,∞] P ν a.s. (2.13)
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Proof.

Eµ
[
‖πµn− − πνn−‖TV

]
= Eν

[
dP µ|FY0,n−1

dP ν |FY0,n−1

‖πµn− − πνn−‖TV

]

= Eν

[
Eν

[
dµ

dν
(X0)

∣∣∣∣Y[0,n−1]

]
‖πµn− − πνn−‖TV

]
= Eν

[
Eν

[
|Eν [

dµ

dν
(X0)|Y[0,∞), X[n,∞)]− Eν [

dµ

dν
(X0)|Y[0,n−1]]|

∣∣∣∣Y[0,n−1]

]]
= Eν

[
|Eν [

dµ

dν
(X0)|Y[0,∞), X[n,∞)]− Eν [

dµ

dν
(X0)|Y[0,n−1]]|

]

We then see that An = Eν [dµ
dν

(X0)|Y[0,n−1]] is a non-negative uniformly integrable

martingale (with respect to the measure P ν) adapted to the increasing filtration

FY0,n−1. Hence the limit as n → ∞ in L1(P ν) is Eν [dµ
dν

(X0)|FY0,∞]. Similarly, we can

view Bn = Eν [dµ
dν

(X0)|Y[0,∞), X[n,∞)] as a backwards non-negative uniformly integrable

martingale (with respect to the measure P ν) adapted to the decreasing sequence of

filtrations FY0,∞ ∨FXn,∞. Then by the backwards martingale convergence theorem, the

limit as n → ∞ in L1(P ν) is Eν [dµ
dν

(X0)|
⋂∞
n=1F

Y
1,∞ ∨ FXn,∞]. It is then clear the the

total variation in expectation is zero if and only if equation (2.13) holds.

Corollary 2.1. The filter merges in total variation in expectation if and only if the

predictor merges in total variation in expectation.

Proof. The sigma fields FXn,∞ ∨ FY0,∞ are a decreasing sequence, that is FXn+1,∞ ∨

FY0,∞ ⊂ FXn,∞ ∨FY0,∞. Therefore, when we take their intersection, removing the first

or largest sigma field FX0,∞ ∨ FY0,∞ from the intersection of a deceasing set of sigma

fields does not change the overall intersection. From Lemma 2.8 and 2.11, it is clear

that the two conditions for merging in total variation in expectation are equivalent

since the sigma fields on the LHS of Equation (2.10) and (2.13) are equal.
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Remark 2.3. Corollary 2.1 is a new result in view of the existing literature. We

note first that much of the literature focuses on continuous time, where the predictor

is not used in the analysis. In discrete time, [36, Lemma 4.2] proves that the merging

of the predictor in total variation in expectation implies that of the filter. However

this result relies on a non-degeneracy assumption in the measurement channel and

the specific structure of the filter recursion equation [10, Equation 1.4].

We have now established that the filter merges in total variation in expectation,

but we would like to extend this result to hold almost surely. By a simple application

of Fatou’s lemma, we can argue the liminf of the total variation of the filter is zero

P µ a.s. Hence if the limit exists, it must be zero, yet it is not immediate that the

limit will exist. In [36, p. 572], a technique is established to prove the existence of

this limit. We now recall the following, where a proof is included for completeness.

Theorem 2.4. [36, p. 572] Assume the filter is stable in total variation in expecta-

tion. Then the filter is stable in total variation P µ a.s.

Proof. Let γ = µ+ν
2

, then we have that µ � γ, ν � γ and furthermore ‖dµ
dγ
‖∞ <

2, ‖dν
dγ
‖∞ < 2. The boundedness of the Radon-Nikodym derivatives is key, as this

makes the expressions in the numerator of equation (2.9) uniformly integrable mar-

tingales with respect tot he measure P µ. This is different than being uniformly inte-

grable with respect to the measure P ν . The latter holds even if the Radon Nikodym

derivative dµ
dν

is unbounded since dν
dµ

is an L1(P ν) function which closes the martingale

Eν
[
dµ
dν

(X0|Y[0,n−1]

]
in the right, thus making it uniformly integrable. However, this

no longer holds we we consider the measure P µ and thus we need a hard upper bound

on the derivative dµ
dγ

to achieve uniform integrability.
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By the martingale convergence theorem (see [5, Theorem 2]) the expressions in

the numerator of (2.9) converge as n→∞. Furthermore, the denominator converges

to a non-zero quantity. Therefore ‖πµn − πγn‖TV and ‖πνn− πγn‖TV admit limits P µ a.s.

We have by assumption,

lim
n→∞

E[‖πµn − πγn‖TV ] = 0 lim
n→∞

E[‖πνn − πγn‖TV ] = 0

therefore, if the limits exist a.s., they must be zero. Via Fatou’s lemma, we have that

limn→∞ ‖πµn − πνn‖TV = 0, and via triangle inequality

lim
n→∞

‖πµn − πνn‖TV ≤ lim ‖πµn − πγn‖TV + lim
n→∞

‖πµn − πγn‖TV = 0 P µ a.s.

2.3.4 Relative Entropy Merging

We will now show that the relative entropy merging of the filter is essentially equiv-

alent to merging in total variation in expectation. Via Lemma 2.6 and 2.9, it is clear

that the filter and predictor admit Radon-Nikodym derivatives. Therefore, working

with D(πµn‖πνn) and D(πµn−‖πνn−) is well defined.

It has been established in [12] that the relative entropy of the filter is a decreasing

sequence, but the analysis is in continuous time and it is worth recreating the results

here in discrete time. To this end, we will extensively use the chain rule for relative

entropy [21, Theorem 5.3.1]:
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Lemma 2.12. For joint measures P,Q on random variables X, Y we have

D(P (X, Y )‖Q(X, Y )) = D(P (X)‖Q(X)) +D(P (Y |X)‖Q(Y |X))

Note for two sigma fields F and G and two joint measures P and Q on F ∨G one

could also express this relationship as

D(P |F∨G‖Q|F∨G) = D(P |F‖Q|F) +D(P |G|F‖Q|G|F)

we will use either notation where it is most convenient. We now use the chain rule

to establish the monotonicity and convergence of the respective relative entropy se-

quences.

Lemma 2.13.

Eµ[D(πµn‖πνn)] ≤ Eµ[D(πµn−‖πνn−)]

Proof. Using the chain rule (Lemma 2.12) we arrive at the following:

D(P µ(Xn, Yn|Y[0,n−1])‖P ν(Xn, Yn|Y[0,n−1]))

=D(P µ(Xn|Y[0,n−1])‖P ν(Xn|Y[0,n−1])) +D(P µ(Yn|Y[0,n−1], Xn)‖P ν(Yn|Y[0,n−1], Xn))

=Eµ[D(πµn−‖πνn−)] +D(P µ(Yn|Y[0,n−1], Xn)‖P ν(Yn|Y[0,n−1], Xn))

=Eµ[D(πµn−‖πνn−)] (2.14)

As was discussed in the proof of Theorem 2.1, Yn conditioned on Xn is independent

of past Y[0,n−1] values and initial measure ν or µ since Yn ∼ Q(dyn|xn), therefore
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D(P µ(Yn|Y[0,n−1], Xn)‖P ν(Yn|Y[0,n−1], Xn)) = 0. If we apply the chain rule the other

way we have

D(P µ(Xn, Yn|Y[0,n−1])‖P ν(Xn, Yn|Y[0,n−1]))

=D(P µ(Xn|Y[0,n])‖P ν(Xn|Y[0,n])) +D(P µ(Yn|Y[0,n−1])‖P ν(Yn|Y[0,n−1]))

=Eµ[D(πµn‖πνn)] +D(P µ(Yn|Y[0,n−1])‖P ν(Yn|Y[0,n−1])) (2.15)

Since relative entropy is always greater than zero, we can equate (2.14) and (2.15)

and arrive at our conclusion, that the relative entropy of the one step predictor is is

greater than the non-linear filter.

Lemma 2.14.

Eµ[D(πµn+1−‖π
ν
n+1−)] ≤ Eµ[D(πµn‖πνn)]

Proof. Using the chain rule in a similar fashion we have

D(P µ(Xn, Xn+1|Y[0,n])‖P ν(Xn, Xn+1|Y[0,n]))

=D(P µ(Xn|Y[0,n])‖P ν(Xn|Y[0,n])) +D(P µ(Xn+1|Y[0,n], Xn)‖P ν(Xn+1|Y[0,n], Xn))

=Eµ[D(πµn‖πνn)] +D(P µ(Xn+1|Y[0,n], Xn)‖P ν(Xn+1|Y[0,n], Xn))

=Eµ[D(πµn‖πνn)] (2.16)

Now, Yn is a noisy measurement of Xn, and {Xn}∞n=0 is a Markov chain, therefore

Xn+1 conditioned on Xn is independent of Y[0,n] and the initial measure, therefore the

second term above is zero yielding (2.16). Applying the chain rule the other way we
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have

D(P µ(Xn, Xn+1|Y[0,n])‖P ν(Xn, Xn+1|Y[0,n]))

=D(P µ(Xn+1|Y[0,n])‖P ν(Xn+1|Y[0,n])) +D(P µ(Xn|Xn+1, Y[0,n])‖P ν(Xn|Xn+1, Y[0,n]))

=Eµ[D(πµn+1−‖πνn+1−)] +D(P µ(Xn|Xn+1, Y[0,n])‖P ν(Xn|Xn+1, Y[0,n])) (2.17)

relative entropy is always non-negative, therefore we equate (2.16) and (2.17) to arrive

at our conclusion.

Corollary 2.2. The relative entropy of the one step predictor and the non-linear

filter are monotonically decreasing sequences bounded below by zero, and therefore

admit limits.

Proof. By a simply application of Lemma 2.13 and 2.14 we have

Eµ[D(πµn+1−‖π
ν
n+1−)] ≤ Eµ[D(πµn‖πνn)] ≤ Eµ[D(πµn−‖πνn−)]

therefore the one step predictor is a monotonically decreasing sequence bounded

below by zero, and admits a limit. Similarly we have

Eµ[D(πµn+1‖π
ν
n+1)] ≤ Eµ[D(πµn+1−‖π

ν
n+1−)] ≤ Eµ[D(πµn‖πνn)]

so the non-linear filter also exhibits this property.

In the literature it has been remarked that relative entropy merging of the filter is

equivalent to total variation merging in expectation. See for example [10, Remark 4.2]

or [38, Remark 5.9]. In [32] it is shown that relative entropy is a non-increasing se-

quence, but not that the limit of this sequence is zero. The following result establishes
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this.

Lemma 2.15. Assume there exists some finite n such that Eµ[D(πµn‖πµn)] < ∞ and

some m such that Eµ[D(P µ|FY0,m‖(P
ν |FY0,m)] <∞. Then the filter is stable in relative

entropy if and only if it is stable in total variation in expectation.

Proof. First assume the filter is stable in relative entropy. Since the square root

function is continuous and convex, we have

0 = lim
n→∞

√
2

log(e)
Eµ[D(πµn‖D(πνn)] ≥ lim

n→∞
Eµ

[√
2

log(e)
D(πµn‖D(πνn)

]

where we have applied Jensen’s inequality. We then apply Pinsker’s inequality (1.7)

and we have limn→∞E
µ[‖πµn − πνn‖TV ] = 0.

For the converse direction, by the chain rule, it is clear that

Eµ[D(πµn‖πνn)] = D(P µ|FXn |F
Y
0,n‖P ν |FXn |F

Y
0,n)

= D(P µ|FXn ∨FY0,n‖P
ν |FXn ∨FY0,n)−D(P µ|FY0,n‖(P

ν |FY0,n)

by the Markov Property we have X[0,n−1], Y[0,n−1] and X[n+1,∞), Y[n+1,∞) are condition-

ally independent given Xn, Yn therefore we have:

D(P µ|FXn ∨FY0,n‖P
ν |FXn ∨FY0,n) = D(P µ|FXn,∞∨FY0,∞‖P

ν |FXn,∞∨FY0,∞)

Then FXn,∞∨FY0,∞ is a decreasing sequence of sigma fields. By [2, Theorem 2] we have

that if the relative entropy is ever finite, the limit of the relative entropy restricted to

these sigma fields is the relative entropy restricted to the intersection of the decreasing
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fields, that is

lim
n→∞

D(P µ|FXn,∞∨FY0,∞‖P
ν |FXn,∞∨FY0,∞) = D(P µ|⋂

n≥0 FXn,∞∨F
Y
0,∞
‖P ν |⋂

n≥0 FXn,∞∨F
Y
0,∞

)

Likewise, FY0,n is an increasing sequence of sigma fields, therefore by [2, Theorem 3]

we have that if the relative entropy is ever finite, the relative entropy restricted to

these sigma fields is the relative entropy over the limit field, that is

lim
n→∞

D(P µ|FY0,n‖P
ν |FY0,n) = D(P µ|FY0,∞‖P

ν |FY0,∞)

Therefore,

lim
n→∞

Eµ[D(πµn‖πνn)] = D(P µ|⋂
n≥0 FXn,∞∨F

Y
0,∞
‖P ν |⋂

n≥0 FXn,∞∨F
Y
0,∞

)−D(P µ|FY0,∞‖P
ν |FY0,∞)

By Lemma 2.3 we have

dP µ|⋂
n≥0 FXn,∞∨F

Y
0,∞

dP ν |⋂
n≥0 FXn,∞∨F

Y
0,∞

= Eν

[
dµ

dν
(X0)

∣∣∣∣ ⋂
n≥0

FXn,∞ ∨ FY0,∞

]
= f1

dP µ|FY0,∞
dP ν |FY0,∞

= Eν

[
dµ

dν
(X0)

∣∣∣∣FY0,∞] = f2

Note that f1 is
⋂
n≥0FXn,∞ ∨ F

Y
0,∞ measurable, while f2 is FY0,∞ measurable, and

FY0,∞ ⊂
⋂
n≥0FXn,∞ ∨ F

Y
0,∞. By Lemma 2.8, we have that if the filter merges in

total variation in expectation, then for a set of state and observation sequences ω =

(xi, yi)
∞
i=0 ∈ A ⊂ FX0,∞ ∨ FY0,∞ with P ν(A) = 1, we have f1(ω) = f2(ω). Yet this then
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means over the set A of P ν measure 1, f1 = f2 is FY0,∞ measurable. We then have

D(P µ|⋂
n≥0 FXn,∞∨F

Y
0,∞
‖P ν |⋂

n≥0 FXn,∞∨F
Y
0,∞

)−D(P µ|FY0,∞‖(P
ν |FY0,∞)

= Eµ[log(f1)]− Eµ[log(f2)] = Eν [f1 log(f1)]− Eν [f2 log(f2)]

=

∫
Ω

f1(ω) log(f1(ω))P ν |⋂
n≥0 FXn,∞∨F

Y
0,∞

(dω)−
∫

Ω

f2(ω) log(f2(ω))P ν |FY0,∞(dω)

=

∫
A

f1(ω) log(f1(ω))P ν |⋂
n≥0 FXn,∞∨F

Y
0,∞

(dω)−
∫
A

f2(ω) log(f2(ω))P ν |FY0,∞(dω)

=

∫
A

f1(ω) log(f1(ω))P ν |FY0,∞(dω)−
∫
A

f2(ω) log(f2(ω))P ν |FY0,∞(dω)

= 0

Therefore, if the relative entropy of the filter is ever finite, then total variation merging

in expectation is equivalent to merging in relative entropy.

2.4 Examples of Observable POMP

We will now study some POMP which are observable. To characterize these observa-

tion channels, rather than view Yn as related to Xn via the stochastic kernel Q we will

consider an i.i.d. noise process {Zn}∞n=0 independent of {Xn}∞n=0 taking values in the

measurable space (Z,B(Z)) with distribution ζ ∈ P(Z). We then have a measure-

ment function h : X × Z → Y and each measurement is realized as Yn = h(Xn, Zn).

For a fixed Xn = x we will denote h(x, Zn) = hx(Zn). We denote the push forward

measure of ζ under hx as hxζ ∈ P(Z) for each x ∈ X . That is, for any A ∈ B(Y) we

have hxζ(A) = ζ(h−1
x (A)). This of course defines the measurement kernel as before,

Yn ∼ Q(dy|Xn) = hXnζ(dy) and in fact any measurement channel Q can be expressed

via some function h and noise distribution ζ and vice versa. However, in some cases
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it is more transparent to characterize the measurement channel via the noise process

and a measurement function rather than the measurement kernel.

2.4.1 Affine Measurement Channel

Consider X ,Z as compact subsets of R. and let y = h(x, z) = a(z)x+ b(z) for some

functions a, b where the image of Z under a and b is compact (this ensures that Y

is compact). Note that for a fixed choice of z, this is an affine function of x. We

will show sufficient conditions for one step observability. Since X is compact, the set

of polynomials is dense in the set of continuous and bounded functions. Therefore,

without loss of generality we assume f is a polynomial. Consider then the mapping

S : RR → RR S(g)(·) 7→
∫
Z

g(h(·, z))ζ(dz)

Let R[x]n represent the polynomials on the real line up to degree n. If we take a

polynomial g(y) =
∑n

i=0 αiy
i and apply S we have

S(g)(x) =

∫
Z

n∑
i=0

αi(x(a(z)) + b(z))iζ(dz)

=
n∑
i=0

αi

∫
Z

(x(a(z)) + b(z))iζ(dz)

=
k∑
i=0

αi

∫
Z

i∑
k=0

(
i

k

)
(xa(z))kb(z)i−kζ(dz)

where we have applied binomial theorem to expand the exponent terms. X is inde-

pendent of Z, therefore inside the integral it acts as a constant and we can move the
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x outside the integral.

=
k∑
i=0

αi

i∑
k=0

xk
(
i

k

)∫
Z
a(z)kb(z)i−kζ(dz)

=
n∑
k=0

xk
n∑
i=k

αi

(
i

k

)
E(a(Z)kb(Z)i−k)

we see that this is a polynomial in x therefore S(g) is invariant on R[x]n, that is

if g is polynomial of degree n then S(g) is a polynomial of degree n. Furthermore,

the coefficients of S(g)(x) =
∑n

i=0 βix
i can be related to the coefficients of g(x) =∑n

i=0 αix
i by a linear transformation. Define N(i, k) =

(
i
k

)
E(a(Z)kb(Z)i−k) then by

recursive application of binomial theorem we have



β0

β1

β2

...

βn


=



N(0, 0) N(1, 0) · · · N(n, 0)

0 N(1, 1) · · · N(n, 1)

...
. . . . . .

...

0 · · · 0 N(n, n)





α0

α1

α2

...

αn


if we want to generate any polynomial, we require this matrix to be invertible, and

since it is upper triangular this amounts to none of the diagonal entries being zero,

that is E[a(z)n] 6= 0 ∀n ∈ N. Furthermore, we want g to be bounded so we must have

N(n, k) <∞ ∀n ∈ N, k ∈ {0, · · · , i}.
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2.4.2 Threshold Channel

Consider X as a compact subset of R, Z = R. Let y = h(x, z) = 1x>zx + 1x≤zz and

assume that ζ admits a density q with respect to Lebesgue. We have

∫
Z
g(h(x, z))ζ(dz) =

∫ x

−∞
g(x)q(z)dz +

∫ ∞
x

g(z)q(z)dz

again, we can approximate any continuous and bounded function f on X as polyno-

mial, so we assume f is differentiable. We have

f(x) =

∫ x

−∞
g(x)q(z)dz +

∫ ∞
x

g(z)q(z)dz

f ′(x) = g(x)q(x) +

∫ x

−∞
g′(x)q(z)dz − g(x)q(x) = g′(x)ζ(Z ≤ x)

Since X is compact there exists some xmin ∈ R such that xmin < X . We require

for some ε > 0 that ζ(Z < xmin) > ε. This condition says every x ∈ X has some

positive probability of being observed through h(x, z) and we will not always get pure

noise. Then we have

g′(x) = 1X (x)
f ′(x)

ζ(Z ≤ x)

g(x) = c+

∫ x

−∞
1X (u)

f ′(u)

ζ(Z ≤ u)
du

for some constant c. Therefore, we only need to define g over X . Furthermore, we

require g to be bounded, which is implied if g′ is bounded since g is only defined over

a compact space.
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2.4.3 Direct Observation

Consider now the case when y = h(x) for some invertible function h. This can be

written as y = h(x) + z where ζ ∼ δ0, that is a point mass at zero. We then have for

any measurable bounded function g

∫
Z

g(h(x) + z)ζ(dz) = g(h(x))

Then for any continuous and bounded function f , define g = f ◦ h−1 and we have

f(x) =
∫
Z
g(h(x) + z)ζ(dz) and the measurement channel is one step observable.

2.4.4 Finite State and Measurement Space

Consider X = {a1, · · · , an} and Y = {b1, · · · , bm} as finite spaces. We note that

for such a setup, there is already a sufficient and necessary condition provided in

[40, Theorem V.2]. However, we examine this case to show that our definition is

equivalent to the sufficient direction of this theorem, which is van Handel’s notion of

observability [37].

The transition kernel T is then an n×n matrix, while the measurement kernel Q is

then an n×m. The POMP is one step observable if and only if Q is rank n or higher.

For k > 1 step observability, we can directly compute the conditional distribution of

Y[0,k]|X0 via Q and T , which is a n ×mk matrix. If this matrix is rank n or higher,

than the POMDP is k step observable.

However, the size of this matrix grows exponentially in k. We can instead compute

a simpler sufficient condition for observability using the marginal measures Yj|X0, j ∈

{0, · · · k} rather than the joint measure Y[0,k]|X0. Each measure Yj|X0 is an n × m
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matrix, therefore all the marginal measures have complexity n × k(m) which grows

linearly in k rather than exponentially. Consider the class of functions Gn = {g :

Yn → R} and a subclass GnLC = {g(y[1,n]) =
∑n

i=1 gi(yi)|gi ∈ G1}. That is, a linear

combination of functions of the individual yi values.

Lemma 2.16. Assume |X | = n and |Y| = m. If the n× n(m) matrix

M =

(
Q TQ · · · T n−1Q

)

is rank n or higher, then the measurement channel is n step observable. Furthermore,

appending more blocks of the form T kQ for k ≥ n will not increase the rank of M .

Proof. Consider some continuous and bounded function f on the state space. Since

the state space is finite, any function is a vector in Rn. Similarly, any function

g ∈ GnLC is a vector in Rnm, α = (g1(b1), · · · , g1(bm), · · · , gn(b1), · · · , gn(bm)). Solving

the equation

f(x) =

∫
Yn
g(y[0,n−1])P

µ(dy[0,n−1])

is solving the matrix equation


f(a1)

...

f(an)

 =

(
Q TQ · · · T n−1Q

)
α

If M is rank n, then for any function f we can find a vector α and corresponding

function g to make the system observable.

Consider if M is not rank n and if we append another block T nQ to M . By
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the Cayley-Hamilton theorem, T n is a linear combination of lower powers of T , e.g.

T n =
∑n

i=0 αiT
i for some coefficients αi. Therefore this additional block is a linear

combination of the previous blocks, and adds no dimension to the matrix M .

If the conditions of this lemma fail, i.e. M is not rank n, that means integrating

g over the marginal measures cannot generate any f function. Yet the product of the

marginal measures is not the the joint measure since the Yi|X1 are not independent.

Hence, working with the marginal measures only is not enough to determine observ-

ability as also noted by van Handel in [37, Remark 13] in a slightly different setup.

Consider the following example

Example

Consider if X = {1, 2, 3, 4} and Y = 1x≤2. This can be realized as

Q =



0 1

0 1

1 0

1 0


Consider the following transition kernel,

T =



0 1
4

1
4

1
2

1
2

0 0 1
2

0 1
4

1
4

1
2

1
2

0 0 1
2


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Notice that the odd and even rows are identical. If we consider the marginal measures

of Y1|X1, · · · , Y4|X1 we have the matrix

(
Q · · · T 3Q

)
=

0 1 0.75 0.25 0.5625 0.4375 0.609375 0.390625

0 1 0.50 0.50 0.6250 0.3750 0.593750 0.406250

1 0 0.75 0.25 0.5625 0.4375 0.609375 0.390625

1 0 0.50 0.50 0.6250 0.3750 0.593750 0.406250


Which is only rank 3, not rank 4. Therefore, we cannot use the marginal measures

to determine observability.

However, if we consider the joint measure of (Y1, Y2)|X1 we have the matrix

A′ =



0 0 3
4

1
4

0 0 1
2

1
2

3
4

1
4

0 0

1
2

1
2

0 0


Where row i is conditioned on x = i and the columns are ordered in binary y2y1,

e.g. P (y1 = 1, y2 = 0|x1 = 2) is row 2 column 3. This matrix is full rank, hence the

system is N step observable with N = 2, even though the marginal measures failed

to be full rank.

Recall van Handel defines the term “observability” as every distinct prior resulting

in a unique measure on YZ+ . Therefore, for a finite system our notion of N step

observability is a sufficient condition for this notion.
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2.5 Summary

In conclusion, the main properties of a POMP that result in filter stability are the

Markovian dependency structure, the observability of the measurement channel, as

well as the merging in total variation of the predictive measures P µ(Y[n,n+k]|Y[0,n−1])

and P ν(Y[n,n+k]|Y[0,n−1]) as n → ∞. The dependacy structure of the POMP is in-

herent, and the merging of the predictive measures on the Yn follows from absolute

continuity of the priors µ � ν and the theorem of Blackwell and Dubins [5]. Ob-

servability then is the contentious property of a POMP which must be investigated

to achieve stability. As we show in Section 2.4, this property holds for a variety of

example systems.

Observability however only results in the weak merging of the predictor almost

surely, and from here different assumptions are required to extend to more stringent

notions of stability for the filter.

Via our results on the structure of the Radon Nikodym derivative in Section 2.3.2,

we show in Corollary 2.1 that total variation merging in expectation is equivalent for

the predictor and filter. Under a mild finiteness assumption of the relative entropies,

total variation merging in expectation is also equivalent to relative entropy merging.
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Chapter 3

Filter Stability in Controlled Environments

3.1 Introduction

The filter can also be examined in a POMDP, where the filter is now the conditional

measure on Xn given knowledge of the measurements Y[0,n] and control actions U[0,n−1],

or equivalently the measurements and knowledge of the control policy which generates

the actions.

Except for the well-established theory on the stability of Kalman filters, in the

literature there is not much discussion of filter stability in controlled environments.

Much of the filter stability literature focuses on the nature of the measurement chan-

nel, or the ergodic properties of the transition kernel in a POMP. With significant

complexity already arising from these areas, the dependency structure of a POMDP

further complicates matters and has not been studied in detail. Furthermore, those

results which rely on the transition kernel to bring about stability run into signifi-

cant issues in a POMDP due to the time varying nature and past dependency of the

transition kernel.
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In the control literature, the effects of control policies on future conditional prob-

abilities is well recognized. This concept is often referred to as the dual effect of

control, in that the control action is implemented to minimize the cost but also af-

fects the conditional distributions given the measurements (i.e. the filter recursion).

Vaguely speaking, dual effect is with regard to the conditional estimation error being

independent of the applied control policy [1]. A system has the no dual effect if the

expected error of the filter will be the same conditioned on the measurements regard-

less of the control actions taken, even though there is a subtle distinction between

policy independence and action independence [42]. In the problems we study, the

dual effect is present and as such, the dependency structure of the POMDP is more

complicated than that of the POMP.

As will be discussed later in Chapter 5, in the theory of optimal partially ob-

served stochastic control, an optimal policy can without any loss use the non-linear

filter realization as a sufficient statistic. Thus, the control admits, in some sense, a

separation structure where first one computes the filter, and then one computes the

control as a function of the filter. Therefore, we see that the filter is vital as it is the

source of information for the optimal controller.

Many of the results for POMPs will carry over to POMDPs, but there is an

important distinction to make. A POMDP is in general not a Markov chain under an

arbitrary policy. Therefore, we cannot appeal to the Markov property to consider the

future and the past as independent conditioned on the present. This has a number

of implications in modifying the results from the POMP setup.

For one step observability, the channel Yn|Xn is unaffected by the control policy,

therefore the POMP results carry over easily. However, for N > 1 step observability
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the channel Y[n,n+N−1]|Xn now depends on the control actions and thus may be time

varying and dependent on the past measurements. In Section 3.3 we examine where

these issues lie in greater detail. Furthermore, in considering the total variation

merging and relative entropy merging certain proofs must be redone without appealing

to the Markov property.

3.2 Predictor Stability

Theorem 3.1. Let µ� ν and let the POMDP be one-step observable (Definition 2.1

i), then the predictor is universally stable in weak merging P µ,λ a.s. That is πµ,γn− and

πν,γn− merge weakly P µ,γ a.s. for any control policy γ ∈ Γ.

Proof. We will first consider a generalized result which we can return to when consid-

ering N > 1 step observability. Consider three stochastic processes A = {An}∞n=0, B =

{Bn}∞n=0, C = {Cn}∞n=0 defined on the same measurable space (Ω,F) mapping to

spaces A,B, C with their respective Borel sigma fields. We can think of A and C

as the “observed” processes and B as some “hidden” process whose realizations are

not known by an observer. For possible measures P and Q on (Ω,F) we have the

following definitions:

Definition 3.1. For a measure P we say the process C only depends on the process

A through B if for every n ∈ N we have P almost surely

P (Cn ∈ ·|An = a,Bn = b) = P (Cn ∈ ·|Bn = b)

Definition 3.2. For a measure P we say the channel C|B is time homogeneous if
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for every n ∈ N, P almost surely

P (Cn ∈ ·|Bn = b) = P (C0 ∈ ·|B0 = b)

Definition 3.3. For two measures P and Q we say the channel C|B is measure

equivalent if for all n ∈ N we have, P,Q almost surely:

P (Cn ∈ ·|Bn = b) = Q(Cn ∈ ·|Bn = b)

Definition 3.4. For a measure P , the channel C|B is observable if for every contin-

uous and bounded function f : B → R we can find a measurable and bounded function

g : C → R such that

sup
b∈B

∣∣∣∣f(b)−
∫
C
g(c0)P (dc0|B0 = b)

∣∣∣∣ < ε

Lemma 3.1. Let A,B,C be stochastic processes as above and assume measures P,Q

satisfy Definitions 3.1-3.4. Assume that

lim
n→∞

‖P (Cn|An)−Q(Cn|An)‖TV = 0 P a.s.

then we have that P (Bn|An) and Q(Bn|An) merge weakly P a.s..

Proof. Consider any continuous and bounded function f : B → R. Pick any ε > 0,

by observability (Definition 3.4) we can find a measurable and bounded function
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g : C → R such that

f̃(b) =

∫
C
g(c0)P (dc0|B0 = b) ‖f − f̃‖∞ <

ε

3

now consider

∣∣∣∣∫ f(bn)P (dbn|an)−
∫
f(bn)Q(dbn|an)

∣∣∣∣
≤
∣∣∣∣∫ f̃(bn)P (dbn|an)−

∫
f̃(bn)Q(dbn|an)

∣∣∣∣+

∣∣∣∣∫ (f − f̃)(bn)P (dbn|an)

∣∣∣∣
+

∣∣∣∣∫ (f − f̃)(bn)Q(dbn|an)

∣∣∣∣
≤
∣∣∣∣∫ f̃(bn)P (dbn|an)−

∫
f̃(bn)Q(dbn|an)

∣∣∣∣+ 2‖f − f̃‖∞

≤
∣∣∣∣∫ f̃(bn)P (dbn|an)−

∫
f̃(bn)Q(dbn|an)

∣∣∣∣+
2

3
ε (3.1)

we then have

∣∣∣∣∫
B
f̃(bn)P (dbn|an)−

∫
B
f̃(bn)Q(dbn|an)

∣∣∣∣
=

∣∣∣∣∫
B

∫
C
g(c0)P (dc0|B0 = b)P (dbn|an)−

∫
B

∫
C
g(c0)P (dc0|B0 = b)Q(dbn|an)

∣∣∣∣
by measure equivalence (Definition 3.3), we can replace P (dc0|B0 = b) withQ(dc0|B0 =

b) in the second term. By time homogeneity (Definition 3.2), we can replace P (dc0|B0 =

b) with P (dcn|Bn = b) and the same for Q. We then have

∣∣∣∣∫
B

∫
C
g(cn)P (dcn|Bn = b)P (dbn|an)−

∫
B

∫
C
g(cn)Q(dcn|Bn = b)Q(dbn|an)

∣∣∣∣
By assumption, C only depends on A through B (Definition 3.1), so we can write

P (dcn|Bn = b) = P (dcn|Bn = b, An = a) for any a. We finally apply chain rule for
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conditional probability and we have

∣∣∣∣∫
C
g(cn)P (dcn|an)−

∫
C
g(cn)Q(dcn|an)

∣∣∣∣ ≤ ‖P (Cn|An)−Q(Cn|An)‖TV (3.2)

By assumption, this goes to zero P a.s. as n→∞ so we can find an N where ∀ n > N

we have (3.2) is less than ε
3

and therefore (3.1) is less than ε.

We can then apply this result to our one step observable POMDP. Denote the

processes An = Y[0,n−1], Bn = Xn and Cn = Yn. We must then check that for the

measures P µ,γ and P ν,γ these processes satisfy Definitions 3.1 to 3.3. Despite the

POMDP not being a Markov chain, for one step observability the measurement Yn is

still fully determined by Xn and the channel Q, therefore

P µ,γ(Yn|Y[0,n−1], Xn) = Q(Yn|Xn) = P ν,γ(Yn|Xn, Y[0,n−1])

therefore the process Yn only depends on Y[0,n−1] through Xn (Definition 3.1). Fur-

thermore the channel between Yn|Xn is Q regardless of the time index or the initial

measure, therefore the channel is time homogeneous (Definition 3.2) and measure

equivalent (Definition 3.3). The process is observable (Definition 3.4) by assumption.

The assumption µ � ν implies P µ,γ|FY0,∞ � P ν,γ|FY0,∞ . {Yn}∞n=0 is a fully observed

stochastic process, therefore by the theorem of Blackwell and Dubins [5] we have that

‖Pµ,γ(Y[n,n+N−1] ∈ ·|Y[0,n−1])− P ν,γ(Y[n,n+N−1] ∈ ·|Y[0,n−1])‖TV → 0 (3.3)

Therefore we satisfy all the conditions of Lemma 3.1 and the weak merging of the

predictor follows.
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The total variation results for the predictor in a POMP carry over easily to a

POMDP with a slight modification to the assumption.

Assumption 3.1. Assume T (·|x, u) is absolutely continuous with respect to a σ-finite

measure λ for every x ∈ X , u ∈ U and denote the resulting pdf as t(·|x, u). Further,

assume the family {t(·|x, u)}x∈X ,u∈U is uniformly bounded and equicontinuous. That

is for every x′ ∈ X and every ε > 0, we can find a δ > 0 such that if d(y, x′) < δ we

have that |t(y|x, u)− t(x′|x, u)| < ε for every x ∈ X , u ∈ U .

Theorem 3.2. Let Assumption 3.1 hold. If the predictor is universally stable in weak

merging almost surely then the predictor is also universally stable in total variation

almost surely.

Proof. The proof is similar to the uncontrolled case Theorem. 2.2.

3.3 Policy dependence of N-Step Observability in a POMDP

We will now discuss why Lemma 3.1 does not hold for N > 1 step observability and a

control policy with memory. For a control policy γ a potential definition of of N > 1

observability is for every f ∈ Cb(X ) and every ε > 0 we can find a measurable and

bounded function g such that

‖f(·)−
∫
YN

g(y[1,N ])P
µ,γ(dy[1,N ]|X1 = ·)‖TV < ε

then denote the stochastic processes An = Y[0,n−1], Bn = Xn and Cn = Y[n,n+N−1].

Recall to apply the general process Lemma 3.1 we must satisfy three properties:
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1. Y[n,n+N−1] can only depend on Y[0,n−1] through Xn:

P µ,γ(Y[n,n+N−1] ∈ ·|Xn, Y[0,n−1]) = P µ,γ(Y[n,n+N−1] ∈ ·|Xn) (3.4)

2. The channel Y[n,n+N−1]|Xn is measure equivalent for P µ,γ and P ν,γ:

P µ,γ(Y[n,n+N−1] ∈ ·|Xn) = P ν,γ(Y[n,n+N−1] ∈ ·|Xn) (3.5)

3. The channel Y[n,n+N−1]|Xn is time homogeneous:

P µ,γ(Y[n,n+N−1] ∈ ·|Xn) = P µ,γ(Y[0,N−1] ∈ ·|X0) ∀ n ∈ N (3.6)

If we take the LHS of (3.4) we have

P µ,γ(Y[n,n+N−1] ∈ ·|Xn, Y[0,n−1])

=

∫
UN−1

P µ,γ(Y[n,n+N−1] ∈ ·|Xn, Y[0,n−1], U[n,n+N−2])P
µ,γ(du[n,n+N−2]|Xn, Y[0,n−1])

by chain rule of conditional probability. Now it is true Y[n,n+N−1]|Xn, U[n,n+N−2] is

independent of Y[0,n−1] so we can stop conditioning on the past measurements in the

inner argument. However, in the outer conditional measure the U[n,n+N−2] may still

depend on the past and we have

∫
UN−1

P µ,γ(Y[n,n+N−1] ∈ G|Xn, U[n,n+N−2])P
µ,γ(du[n,n+N−2]|Xn, Y[0,n−1]) (3.7)
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if we take the RHS of (3.4) we have

P µ,γ(Y[n,n+N−1] ∈ G|Xn)

=

∫
UN−1

P µ,γ(Y[n,n+N−1] ∈ G|Xn, U[n,n+N−2])P
µ,γ(du[n,n+N−2]|Xn) (3.8)

these two equations are not equal for a general control policy, therefore the process

fails Definition 3.1, Y[n,n+N−1] does not depend on Y[0,n−1] through Xn. As a result,

a definition of N > 1 step observability is incompatible with the proof technique

outlined in Lemma 3.1 and we cannot utilize N > 1 step observability in a controlled

environment to prove stability.

3.4 Filter Stability

3.4.1 Weak Merging

To achieve weak merging of the filter, the proof is the same as in the POMP case. The

measurement channel Q is unaffected by control actions, so assumption 2.2 applies

directly.

Theorem 3.3. Let Assumption 2.2 hold, if the predictor is universally stable in weak

merging almost surely, then the filter is universally stable in weak merging in expec-

tation.

Proof. The proof is similar to the uncontrolled case Theorem 2.3.

3.4.2 Total Variation Merging

So far, the stability results in this chapter have carried over easily since they do not

appeal to the Markov property of the POMP. However, Lemma 2.10, Lemma 2.14
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and Lemma 2.15 all utilize the Markov property in some way, and therefore must be

re-analysed in a control environment.

Lemma 2.5, 2.6, and 2.9 carry over directly from the uncontrolled case to the

controlled case. Therefore we have that for a POMDP

dπµ,γn−
dπν,γn−

(x) =
Eν,γ[dµ

dν
(X0)|Y[0,n−1], Xn = x]

Eν,γ[dµ
dν

(X0)|Y[0,n−1]]
P µ,γ a.s. (3.9)

dπµ,γn
dπν,γn

(x) =
Eν,γ[dµ

dν
(X0)|Y[0,n], Xn = x]

Eν,γ[dµ
dν

(X0)|Y[0,n]]
P µ,γ a.s. (3.10)

Lemma 3.2. Assume µ� ν then we can express

‖πµ,γn− − π
ν,γ
n−‖TV =

Eν,γ
[∣∣∣Eν,γ [dµdν (X0)|Y[0,∞), X[n,∞)]− Eν,γ [dµdν (X0)|Y[0,n−1]]

∣∣∣∣∣∣Y[0,n−1]

]
Eν,γ

[
dµ
dν (X0)

∣∣∣Y[0,n−1]

]
(3.11)

‖πµ,γn − πν,γn ‖TV =
Eν,γ

[∣∣∣Eν,γ [dµdν (X0)|Y[0,∞), X[n,∞)]− Eν,γ [dµdν (X0)|Y[0,n]]
∣∣∣∣∣∣Y[0,n]

]
Eν,γ

[
dµ
dν (X0)

∣∣∣Y[0,n]

] (3.12)

Proof. By Lemma 2.5 we can write

‖πµ,γn− − π
ν,γ
n−‖TV =

Eν,γ
[
|Eν,γ[dµ

dν
(X0)|Y[0,n−1], Xn]− Eν,γ[dµ

dν
(X0)|Y[0,n−1]]|

∣∣Y[0,n−1]

]
Eν,γ

[
dµ
dν

(X0)
∣∣Y[0,n−1]

]
we no longer have the Markov property, therefore X[n+1,∞), Y[n+1,∞)|Xn, Yn is not

independent of X[0,n−1], Y[0,n−1]. That is the future conditioned on the present is not

independent of the past. However, this is not the direction of dependence we require

in this proof. What we need is X0|Y[0,n−1], Xn is independent of X[n+1,∞), Y[n,∞) which

still holds without the Markov property.

Consider a visual depiction in Figure 3.1. Say we are conditioning on X2, Y0, Y1.
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X0 X1 X2 X3

Y0 Y1 Y2 Y3U0

U1

U2

U3

Figure 3.1: Diagram of Dependence in a POMDP. When X0 is conditioned on
X2, Y[0,1] then X[3,∞), Y[2,∞) do not add any new information to the con-
ditioning

Since the control policy is known to us, we also know the realizations of U0 and U1.

If we colour in these nodes on the diagram we see that they cordon off X0 from

X[3,∞), Y[2,∞). This is, if we follow back any line from a node Xn, n > 2 or Yn, n > 1

to X0 we must go through one of the red nodes, and hence these future nodes do not

add anything useful to the conditioning. Therefore we can state

Eν,γ[
dµ

dν
(X0)|Y[0,n−1], Xn] = Eν,γ[

dµ

dν
(X0)|Y[0,∞), X[n,∞)]

the rest of the proof follows with a similar approach for the filter.

Lemma 2.8 and 2.11 then carry over directly.

Corollary 3.1. For a POMDP, the filter is universally stable in total variation in

expectation if and only if the predictor is universally stable in total variation in ex-

pectation.

Proof. The proof is the similar to the uncontrolled case Corollary 2.1.
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Theorem 3.4. For a POMDP, if the filter is universally stable in total variation in

expectation then it is universally stable in total variation almost surely.

Proof. The proof is similar to the uncontrolled case Theorem 2.4

3.4.3 Relative Entropy Merging

For relative entropy, Lemma 2.13 carries over directly, since the measurement channel

Yn|Xn is the same for a POMDP and a POMP. However, Lemma 2.14 must be re-

proven since it appeals to the Markov property.

Lemma 3.3.

Eµ,γ [D(πµ,γn+1−‖π
ν
n+1−)] ≤ Eµ,γ [D(πµ,γn ‖πν,γn )]

Proof. Using chain rule we have

D(P µ,γ(Xn, Xn+1|Y[0,n])‖P ν,γ(Xn, Xn+1|Y[0,n]))

=D(P µ,γ(Xn|Y[0,n])‖P ν,γ(Xn|Y[0,n])) +D(P µ,γ(Xn+1|Y[0,n], Xn)‖P ν,γ(Xn+1|Y[0,n], Xn))

=Eµ,γ[D(πµ,γn ‖πν,γn )] +D(P µ,γ(Xn+1|Y[0,n], Xn)‖P ν,γ(Xn+1|Y[0,n], Xn))

=Eµ,γ[D(πµ,γn ‖πν,γn )] (3.13)

Now consider for any set A ∈ B(X ) we have

P µ,γ(Xn+1 ∈ A|Y[0,n], Xn) =

∫
U
P µ,γ(Xn+1 ∈ G|Y[0,n], Xn, Un)P µ,γ(dun|Y[0,n], Xn)

= T (A|Xn, γn(Y[0,n]))

= P ν,γ(Xn+1 ∈ A|Y[0,n], Xn)
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therefore the channel Xn+1|Y[0,n], Xn is measure equivalent for P µ,γ and P ν,γ therefore

the second term above is zero yielding (3.13). Applying chain rule the other way we

have

D(P µ,γ(Xn, Xn+1|Y[0,n])‖P ν,γ(Xn, Xn+1|Y[0,n]))

=D(P µ,γ(Xn+1|Y[0,n])‖P ν,γ(Xn+1|Y[0,n])) +D(P µ,γ(Xn|Xn+1, Y[0,n])‖P ν,γ(Xn|Xn+1, Y[0,n]))

=Eµ,γ[D(πµ,γn+1−‖π
ν,γ
n+1−)] +D(P µ,γ(Xn|Xn+1, Y[0,n])‖P ν,γ(Xn|Xn+1, Y[0,n])) (3.14)

relative entropy is always non-negative, therefore we equate (3.13) and (3.14) to arrive

at our conclusion.

We then have the the relative entropy of the predictor and filter are non-increasing

sequences bounded bellow by zero, and hence admit limits. It remains to show that

this limit is zero. Lemma 2.15 cannot be applied directly since it appeals to the

Markov property and therefore must be re-proven.

Lemma 3.4. Assume there exists some finite n such that Eµ,γ[D(πµ,γn ‖πµ,γn )] <∞ and

some m such that Eµ,γ[D(P µ,γ|FY0,m‖(P
ν,γ|FY0,m)] < ∞. Then the filter is universally

stable in relative entropy if and only if it is universally stable in total variation in

expectation.

Proof. The entire proof of Lemma 2.15 carries over except for the following equation

D(P µ,γ|FXn ∨FY0,n‖P
ν,γ|FXn ∨FY0,n) = D(P µ,γ|FXn,∞∨FY0,∞‖P

ν,γ|FXn,∞∨FY0,∞) (3.15)

We will switch from sigma field notation to random variable notation for clarity. If
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we take D(P µ,γ(X[n,∞), Y[0,∞))‖P ν,γ(X[n,∞), Y[0,∞)) and apply chain rule we have

D(P µ(X[n,∞), Y[0,∞])‖P ν(X[n,∞), Y[0,∞])) = D(P µ,γ(Xn, Y[0,n])‖P ν,γ(Xn, Y[0,n]))

+D(P µ,γ((X, Y )[n+1,∞)|Xn, Y[0,n])‖P ν,γ((X, Y )[n+1,∞)|Xn, Y[0,n]))

as was shown in Lemma 3.3, the channel Xn+1|Xn, Y[0,n] is measure equivalent and

the same holds for (X, Y )[n+1,∞)|Xn, Y[0,n]. Therefore the second term above is zero

and we have our desired result.

3.5 Summary

Much like a POMP, filter stability for a POMDP can arise via observability of the

measurement channel. The measurement channel Yn|Xn ∼ Q(dy|x) is not effected by

control actions, hence one step observability applies directly to POMDPs. However,

due to the dual effect of the control, the dependency structure of the POMDP is

more complicated and the notion of N > 1 step observability is only useful for filter

stability in control problems when the DM cannot effect the transition kernel of the

underlying Markov process. If this is the case, the POMDP to behaves like a POMDP

and the stability results carry over.

Total variation merging and relative entropy merging are achieved with similar

results to the POMP case, but the proofs are modified to avoid using the Markov

property. As we will later see, the total variation merging of the predictor will prove

useful when studying the robustness of the average cost problem to incorrect priors

in Section 5.6
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Chapter 4

Stability Via Ergodic Transition Kernels

4.1 Introduction

In this chapter, we consider a kernel “ergodic” if it brings measures together over

time, that is ‖T n(µ) − T n(ν)‖ → 0 as n → ∞ for any measures µ and ν. We will

look at different properties of the transition kernel T and measurement kernel Q that

result in this ergodicity and how this can lead to filter stability.

In the previous chapters, stability follows from observability and Blackwell’s mar-

tingale convergence results [5]. The measurements provide sufficient information over

time about the underlying process, and inform the observer of the state realization.

However, these results are asymptotic and do not provide a rate of convergence. In a

control application, a system designer may want guarantees on rates of convergence

to achieve sufficient merging in finite time.

A definition of stability with a rate attached to it is exponential stability.

Definition 4.1. A POMP is said to be exponentially stable in total variation in
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expectation if there exists a coefficient 0 < α < 1 such that for any µ� ν we have

Eµ[‖πµn+1 − πνn+1‖TV ] ≤ αEµ[‖πµn − πνn‖TV ] n ∈ {0, 1, · · · }

With this definition we can guarantee how fast the filter is merging and for any

ε > 0 we can find provide a specific finite N such that

Eµ[‖πµn − πνn‖TV ] ≤ ε ∀n > N

Let us first turn our attention to POMPs. Recall the filter update operator πµn+1 =

φ(πn, yn+1) which is the composition of the transition kernel T (·) and the Bayesian

update operator ψ(·, yn+1). In this chapter we will study when φ is a contraction in

expectation, that is

Eµ[‖φ(πµn+1, yn+1)− φ(πνn+1, yn+1)‖TV ] ≤ α‖πµn − πνn‖TV

for some α < 1.

A common approach in the literature is the study φ directly as the aggregate of T

and ψ and show that it is a contraction using the Hilbert metric [20]. However, this

approach relies on a very restrictive assumption called the mixing condition that is

not applicable to many systems one would want to analyse.

In our approach, we study the contraction properties of T and Q separately and

then combine them. We arrive at a result that does not require the mixing condition.

Our approach studies the Dobrushin coefficient of kernel operators, rather than the

mixing condition and is much less restrictive. T is a linear operator and under mild



4.2. HILBERT METRIC AND ITS LIMITATIONS 78

conditions (i.e. a non-zero Dobrushin coefficient), a contraction. On the other hand,

ψ is a non-linear operator and not a contraction since the expected posterior distri-

butions may have larger total variation than their priors under a Bayesian update.

T has a well known contraction coefficient that is determined by its Dobrushin co-

efficient, and we derive an upper bound expansion coefficient for ψ that is determined

by the Dobrushin coefficient of Q. If the product of the contraction coefficient and

the expansion coefficient is less than one, then the composed operator is a contraction

and we have our desired result.

However, there is a consequence to this approach. In deriving the upper bound

expansion coefficient for ψ we apply the triangle inequality, and this step loses any

benefit from the informative nature of Q. Q then becomes adversarial to T in that

T is a contraction, while ψ is expansive. Counter-intuitively, our result prioritizes

measurement channels Q that are un-informative, where Q(dy|x) and Q(dy|x′) are

similar distributions for x, x′ ∈ X . Such measurement channels have high Dobrushin

coefficients and thus ψ as a lower expansion coefficient.

4.2 Hilbert Metric and Its Limitations

One common approach in the literature to achieve exponential stability is to utilize

the Hilbert metric.

Definition 4.2. [20, Definition 3.1] Two non-negative measures µ and ν on a mea-

surable space (S,F) are called comparable if ∃ 0 < a ≤ b such that ∀A ∈ F

aµ(A) ≤ ν(A) ≤ bµ(A)
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Definition 4.3. [20, Definition 3.2] A kernel K : S1 → P(S2) is called mixing

if there exists a finite non-negative measure λ ∈ P(S2) and 0 < ε ≤ 1 such that

∀ A ∈ B(S2), s ∈ S1

ελ(A) ≤ K(s, A) ≤ 1

ε
λ(A)

Mixing is a very strong assumption on a kernel. For a kernel on a finite probability

space (which is a stochastic matrix) the kernel is mixing if and only if each column

of the matrix is fully zero or fully non-zero. For example


0 0.25 0.75

0.25 0.25 0.5

0 0.1 0.9


is not a mixing kernel.

For a kernel K : S1 → P(S2) which is non-degenerate with dominating measure

λ and likelihood function k(s1, s2), the kernel is mixing if and only if there exists two

enveloping functions f1, f2 ∈ L1(λ) such that

0 < a ≤ f1(s2)

f2(s2)
≤ b <∞ ∀s2 ∈ S2

f1(s2) ≤ k(s1, s2) ≤ f2(s2) ∀s1 ∈ S1, s2 ∈ S2

For example, if K : R→ P(R) where K(dx′|x) ∼ N(f(x), σ) where ‖f‖∞ <∞ then

K is not a mixing kernel.

Definition 4.4. [20, Definition 3.3] Let µ, ν be two non-negative finite measures. We
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define their Hilbert metric as

h(µ, ν) =



log

(
supA|ν(A)>0

µ(A)
ν(A)

infA|ν(A)>0
µ(A)
ν(A)

)
if µ, ν are comparable

0 if µ = ν = 0

∞ else

We see that the Hilbert metric is only meaningful when µ and ν are comparable.

Yet comparablility implies mutual absolute continuity (i.e. µ � ν and ν � µ)

and therefore the Radon Nikodym derivatives dµ
dν

and dν
dµ

exist. Furthermore, these

derivatives are bounded from above and bellow away from zero and

h(µ, ν) = log

(∥∥∥∥dµdν
∥∥∥∥
∞

∥∥∥∥dνdµ
∥∥∥∥
∞

)

when the measures are comparable. The Hilbert metric is a projective distance, mean-

ing if we scale either of the measures by a constant it will not change the Hilbert met-

ric. This makes the metric very useful when studying the Bayesian update operator

ψ since the denominator in a Bayesian update is a non-linear scaling operator, while

the numerator is a linear operator.

Theorem 4.1. [20, Corollary 4.2] Assume the measurement channel is non-degenerate.

Let φ̄ represent the un-normalized filter update,

φ̄(µ, y)(dx) = g(x, y)T (µ)(dx)

which is a kernel mapping to the space of non-negative finite measures and not nec-

essarily the space of probability measures. If φ̄ is a mixing Kernel with coefficient
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ε > 0 ∀y ∈ Y then

‖πµn+m − πνn+m‖TV ≤
(

2

log(3)ε2

)(
1− ε2

1 + ε2

)m−1

‖πµn − πνn‖TV (4.1)

Note that if T is a mixing kernel with coefficient ε, then φ̄ is as well but this can

also be achieved without T begin mixing, see [20, Example 3.10]. However, there are

a few undesirable points that follow from the Hilbert metric approach.

• Requiring φ̄ to be a mixing kernel is a very restrictive assumption.

• Equation (4.1) is not a strict contraction due the scaling term of 2
log(3)ε2

which

can get quite large for ε� 1.

• The “exponential coefficient” 1−ε2
1+ε2

is close to 1 for most reasonable values of

ε� 1 and hence has a very slow rate of decay.

4.3 A New Approach Via Dobrushin Coefficients

Therefore, we see that an approach utilizing the Hilbert metric can yield exponential

filter stability, but has undesirable properties. We will take a different approach by

looking instead at the Dobrushin coefficient of a kernel operator.

Definition 4.5. [16, Equation 1.16] For a kernel operator K : S1 → P(S2) we define

the Dobrushin coefficient as:

δ(K) = inf
n∑
i=1

min(K(x,Ai), K(y, Ai)) (4.2)

where the infimum is over all x, y ∈ S1 and all partitions {Ai}ni=1 of S2.
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Note this definition holds for continuous or finite/countable spaces S1 and S2.

Note that 0 ≤ δ(K) ≤ 1 for any kernel operator. We then have for two probability

measures π, π′ ∈ P(S1) [16]:

‖K(π)−K(π′)‖TV ≤ (1− δ(K))‖π − π′‖TV

As was discussed in Chapter 1, the filter update operator φ is a composition of the

transition kernel T and the Bayesian update operator ψ. The transition operator T

is a contraction mapping with coefficient (1 − δ(T )), which potentially could be 1.

Assume that it is less than 1, then without the Bayes’ update the transition operator

would being measures together with each successive application. However, the Bayes’

operator is in general not a contraction, and can in fact increase the total variation

distance between posteriors compared to the priors. We are therefore not guaranteed

that the composition of the two operators is a contraction. However, if we have an

upper bound on

Eµ[‖ψ(µ, y)− ψ(ν, y)‖TV ]

‖µ− ν‖TV

then if δ(T ) is sufficiently large, the possible expansion property of ψ is dominated

by the contraction property of T and the composed operator φ is itself a contraction

in expectation.

Lemma 4.1. Consider a true prior µ and a false prior ν with µ � ν. Assume that

the measurement channel is non-degenerate, then we have that

Eµ[‖ψ(µ, y)− ψ(ν, y)‖TV ] ≤ (2− δ(Q))‖µ− ν‖TV
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Proof. Let us now take a closer look at the operator ψ. For a general probability

measure π define the normalizing constant:

Nπ(y) =

∫
X
g(x, y)π(dx)

and we have

‖ψ(µ, y)− ψ(ν, y)‖TV = sup
‖f‖∞≤1

∣∣∣∣∫
X

f(x)g(x, y)

Nµ(y)
µ(dx)−

∫
X

f(x)g(x, y)

N ν(y)
ν(dx)

∣∣∣∣
= sup
‖f‖∞≤1

∣∣∣∣∫
X

f(x)g(x, y)

Nµ(y)
µ(dx)−

∫
X

f(x)g(x, y)

Nµ(y)
ν(dx) +

∫
X

f(x)g(x, y)

Nµ(y)
ν(dx)

−
∫
X

f(x)g(x, y)

Nν(y)
ν(dx)

∣∣∣∣
≤ sup
‖f‖∞≤1

1

Nµ(y)

∣∣∣∣∫
X

f(x)g(x, y)(µ− ν)(dx)

∣∣∣∣
+ sup
‖f‖∞≤1

∣∣∣∣ 1

Nµ(y)
− 1

N ν(y)

∣∣∣∣ ∣∣∣∣∫
X
f(x)g(x, y)ν(dx)

∣∣∣∣
≤ sup
‖f‖∞≤1

1

Nµ(y)

∣∣∣∣∫
X

f(x)g(x, y)

(
dµ

dν
(x)− 1

)
ν(dx)

∣∣∣∣+

∣∣∣∣Nν(y)−Nµ(y)

Nµ(y)N ν(y)

∣∣∣∣N ν(y)

≤
(

1

Nµ(y)

)(
|Nµ(y)−N ν(y)|+

∫
X

g(x, y)

∣∣∣∣1− dµ

dν
(x)

∣∣∣∣ ν(dx)

)

we then have

Eµ[‖ψ(µ, y)− ψ(ν, y)‖TV ] =

∫
X

∫
Y

‖ψ(µ, y)− ψ(ν, y)‖TVQ(dy|x)µ(dx)

=

∫
X

∫
Y

‖ψ(µ, y)− ψ(ν, y)‖TV g(x, y)λ(dy)µ(dx)

=

∫
Y

‖ψ(µ, y)− ψ(ν, y)‖TV
(∫

X

g(x, y)µ(dx)

)
λ(dy)

=

∫
Y

‖ψ(µ, y)− ψ(ν, y)‖TVNµ(y)λ(dy)
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≤
∫
Y

(
|Nµ(y)−N ν(y)|+

∫
X

g(x, y)

∣∣∣∣1− dµ

dν
(x)

∣∣∣∣ ν(dx)

)
λ(dy)

≤
∫
Y
|Nµ(y)−N ν(y)|λ(dy) +

∫
Y

∫
X

g(x, y)

∣∣∣∣1− dµ

dν
(x)

∣∣∣∣ ν(dx)λ(dy)

=

∫
Y

∣∣∣∣∫
X
g(x, y)(µ− ν)(dx)

∣∣∣∣λ(dy) +

∫
X

∣∣∣∣1− dµ

dν
(x)

∣∣∣∣ (∫
Y
g(x, y)λ(dy)

)
ν(dx)

Let us examine these two terms separately. For the second term, g(x, y) is a proba-

bility density function for a fixed x, therefore it integrates to 1 over λ and we have

∫
X

∣∣∣∣1− dµ

dν
(x)

∣∣∣∣ (∫
Y
g(x, y)λ(dy)

)
ν(dx) =

∫
X

∣∣∣∣1− dµ

dν
(x)

∣∣∣∣ ν(dx) = ‖µ− ν‖TV

for the first term, define the sets

S+ = {y|
∫
X

g(x, y)(µ− ν)(dx) > 0}

S− = {y|
∫
X

g(x, y)(µ− ν)(dx) ≤ 0}

then we have

∫
Y

∣∣∣∣∫
X
g(x, y)(µ− ν)(dx)

∣∣∣∣λ(dy)

=

∫
S+

∫
X
g(x, y)(µ− ν)(dx)λ(dy)−

∫
S−

∫
X
g(x, y)(µ− ν)(dx)λ(dy)

=

∫
Y

(1S+(y)− 1S−(y)) g(x, y)(µ− ν)(dx)λ(dy)

We then have that 1+
S (y) − 1S−(y) is a measurable function of y with infinity norm
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equal to 1, and in fact it achieves the supremum overall such functions. That is

∫
Y

(1S+(y)− 1S−(y)) g(x, y)(µ− ν)(dx)λ(dy) = sup
‖f‖∞≤1

∣∣∣∣∫
Y
f(y)g(x, y)(µ− ν)(dx)λ(dy)

∣∣∣∣
= ‖Q(µ)−Q(ν)‖TV

≤ (1− δ(Q))‖µ− ν‖TV

putting these together,

Eµ[‖ψ(µ, y)− ψ(ν, y)‖TV ] ≤ (1− δ(Q))‖µ− ν‖TV + ‖µ− ν‖TV

= (2− δ(Q))‖µ− ν‖TV

Theorem 4.2. Assume that µ � ν and that the measurement channel is non-

degenerate. Then we have

Eµ[‖πµn+1 − πνn+1‖TV ] ≤ (1− δ(T ))(2− δ(Q))Eµ[‖πµn − πνn‖TV ]

Proof.

Eµ[‖πµn+1 − π
ν
n+1‖TV ] = Eµ[‖φ(πµn, yn+1)− φ(πνn, yn+1)‖TV ]

= Eµ[‖ψ(T (πµn), yn+1)− ψ(T (πνn), yn+1)‖TV ]

=

∫
Yn+2

‖ψ(T (πµn), yn+1)− ψ(T (πνn), yn+1)‖TV Pµ(dy[0,n+1])

=

∫
Yn+1

∫
X

∫
Y
‖ψ(T (πµn), yn+1)− ψ(T (πνn), yn+1)‖TV Pµ(dyn+1|xn+1, y[0,n])P

µ(dxn+1|y[0,n])P
µ(dy[0,n])

=

∫
Yn+1

∫
X

∫
Y
‖ψ(T (πµn), yn+1)− ψ(T (πνn), yn+1)‖TVQ(dyn+1|xn+1)T (πµn)(dx)Pµ(dy[0,n])
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=

∫
Yn+1

ET (πµn)[‖ψ(T (πµn), yn+1)− ψ(T (πνn), yn+1)‖TV ]Pµ(dy[0,n])

≤ (2− δ(Q))

∫
Yn+1

‖T (πµn)− T (πνn)‖TV Pµ(dy[0,n])

≤ (2− δ(Q))(1− δ(T ))

∫
Yn+1

‖πµn − πνn‖TV Pµ(dy[0,n])

= (2− δ(Q))(1− δ(T ))Eµ[‖πµn − πνn‖TV ]

Corollary 4.1. Assume µ� ν and that the measurement channel is non-degenerate.

If we have

α = (1− δ(T ))(2− δ(Q)) ≤ 1 (4.3)

then the filter is exponentially stable in total variation in expectation with coefficient

α and

Eµ[‖πµn − πνn‖TV ] ≤ (2− δ(Q)) (αn) ‖µ− ν‖TV

Furthermore, if δ(T ) > 1
2

then α < 1 and the POMP is exponentially stable regardless

of the measurement kernel Q.

Proof. By recursive application of Theorem 4.2 we have

Eµ[‖πµn − πνn‖TV ] ≤ αnEµ[‖πµ0 − πν0‖TV ]

πµ0 is then the Bayesian update of µ under the first observation Y0, therefore we apply
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Lemma 4.1 and we have

αnEµ[‖πµ0 − πν0‖TV ] = αnEµ[‖ψ(µ, y0)− ψ(ν, y0)‖TV ] ≤ (2− δ(Q))(αn)‖µ− ν‖TV

Finally, recall that for any kernel K we have 0 ≤ δ(K) ≤ 1 therefore if we have

δ(T ) > 1
2

α = (1− δ(T ))(2− δ(Q)) <
1

2
(2− δ(Q)) ≤ 2

2
= 1

Note that this result is sufficient, but certainly not necessary. In what seems like

a counter-intuitive result, this result prioritizes measurement channels Q that are

un-informative as opposed to those that are informative. For example a completely

independent observation Y will have δ(Q) = 1 and direct observation will have δ(Q) =

0. However, the idea of this result is that T is sufficiently ergodic in that without any

Bayes’ update, the mapping T is a contraction and would bring measures together.

We then want a transition kernel Q that does not “change” this ergodic property,

and a completely independent observation will result in ψ(µ) = µ, and hence will not

conflict with the transition kernel.

For example, consider a finite system and direct observation. That is y is an

invertible deterministic function of x, Y = h(X). Then we have

‖ψ(µ, y)− ψ(ν, y)‖ = sup
‖f‖∞≤1

∣∣∣∣∣∑
x∈X

f(x)g(x, y)

(
µ(x)

Nµ(x)
− ν(x)

N ν(y)

)∣∣∣∣∣
= sup
‖f‖∞≤1

∣∣∣∣∣∑
x∈X

f(x)1h−1(y)(x)

(
µ(x)

µ(h−1(y))
− ν(x)

ν(h−1(y))

)∣∣∣∣∣
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= sup
‖f‖∞≤1

∣∣∣∣f(h−1(y))

(
µ(h−1(y))

µ(h−1(y))
− ν(h−1(y))

ν(h−1(y))

)∣∣∣∣
= 0

However, if we add and subtract µ(h−1(y))
ν(h−1(y))

in the first line and apply the triangle

inequality we have:

(
1

µ(h−1(y))

)
sup
‖f‖∞≤1

∣∣f(h−1(y))(µ(h−1(y))− ν(h−1(y))
∣∣

+ |f(h−1(y))ν(h−1(y))|
∣∣∣∣µ(h−1(y))− ν(h−1(y))

ν(h−1(y))

∣∣∣∣
=

(
1

µ(h−1(y))

) ∣∣(µ(h−1(y))− ν(h−1(y))
∣∣+
∣∣µ(h−1(y))− ν(h−1(y))

∣∣
6= 0

this is the same approach taken in the proof of Lemma 4.1. We see that the tri-

angle inequality results in a loose bound that ignores the informative nature of the

measurement channel, and thus Theorem 4.2 relies on the ergodic properties of the

transition kernel to achieve exponential filter stability.

4.4 Controlled System

These results easily extend to a POMDP. In a controlled environment the measure-

ment channel Q is unchanged, however the transition kernel T (dx′|x, u) is different

for each control action u. If we define

δ̃(T ) = inf
u∈U

δ(T (·|·, u))
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then the result for a POMDP follows easily.

Corollary 4.2. Assume µ� ν and that the measurement channel is non-degenerate.

If we have

α = (1− δ̃(T ))(2− δ(Q)) < 1

then the filter is universally exponentially stable with coefficient α.

Therefore, in order to guarantee exponential stability in a control environment

we first check the expansion coefficient of the Bayesian update operator (2 − δ(Q)).

Then, we find the Dobrushin coefficient of T (·|·, u) for every difference control action

u. If under each control action T (·|·, u) has a high enough Dobrushin coefficient, then

for every control action the filter update operator is a contraction in total variation

in expectation. It then does not matter what control policy is implemented, since

each control action results in a transition kernel with a sufficient high Dobrushin

coefficient, and thus we have universal exponential stability.

4.5 Summary

To achieve an exponential rate of filter stability, observability of the measurement

channel is not enough. It is more useful to study the contraction properties of the

composed filter update operator φ which is the composition of the transition kernel

T and the Bayesian update operator ψ. One such approach common in the literature

is to utilize the Hilbert metric, which is a projective distance hence we can study φ

without the non-linear normalizing term that arises in the Bayesian update. However,

this approach requires the update kernel φ to have a mixing coefficient [20] which
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greatly reduces the types of kernels which can be studied with this approach.

We instead focus on the Dobrushin coefficient, which is a much more general

measure of ergodicity for a kernel. It is well known that the transition kernel T is a

contraction with coefficient 1 − δ(T ) [16]. We further show in Lemma 4.1 that the

Bayesian update operator, while not being a contraction, has an upper bound 2−δ(Q)

on how expansive it is based on the Dobrushin coefficient of Q. If the product of

these coefficient is less than one, than the composed operator is a contraction and we

achieve exponential filter stability. Furthermore, if δ(T ) > 1
2

than we have exponential

stability regardless of the measurement kernel.

Stochastic kernels where the conditional measures K(dy|x) ≈ K(dy|x′) for differ-

ent x, x′ have high Dobrushin coefficients, while kernels with very diverse conditional

measures have lower Dobrushin coefficients. Therefore, our result prioritizes transi-

tion kernels T and Q with high Dobrushin coefficients. This is in many ways counter-

intuitive, as an informative measurement channel Q would have a low Dobrushin

coefficient and thus be undesirable. Yet this is because our results rely primarily on

the transition kernel bringing measures together quickly, and an informative kernel

has the possibility of interfering with that process. On the other hand, an uninfor-

mative kernel will not greatly change the measure in the Bayesian update, and thus

the ergodic transition kernel T will dominate the composition in the filter update

operator.
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Chapter 5

Filter Stability and Robustness in POMDPs

5.1 Introduction

In this chapter we will utilize our stability results to consider the expected cost in-

curred by an incorrectly designed control policy. As noted in Chapter 1, we consider

three different control problems: the single stage cost problem, the infinite horizon

discount cost problem, and the infinite horizon average cost problem. In each case,

the DM makes control actions based on its observations and incurs a cost J(µ, γ)

which is a function of the initial measure µ of the POMDP and the control policy γ

implemented.

An optimal control policy γµ for a given prior µ is the control policy which achieves

the infimum of the expected cost over all admissible control policies, J(µ, γµ) =

infγ∈Γ J(µ, γ) ≡ J∗(µ). In this work we will not be interested in the existence of such

optimal policies, which is not always guaranteed. Throughout this chapter we will

assume that

• Optimal policies exist for the priors being discussed

• Optimal policies are stationary functions of the filter realization, that is there
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exists a mapping Φ : P(X )→ U where

γµn(y[0,n]) = Φ(πµ,γ
µ

n )

These assumptions are justified for the kinds of problems we study in this chapter.

Under weak continuity and measurable selection conditions, for both finite and infinite

horizon problems we can establish the existence of optimal policies. For infinite

horizon discounted cost problems, by studying the measurable selection criteria we can

use dynamic programming to establish optimal solutions for finite horizon discounted

problems [23]. By taking the limit as the horizon goes to infinity, we see that the

optimal policy is a stationary mapping of the filter realization that solves a fixed point

equation

v(µ) = min
u∈U

(Eµ[c(X, u)] + βEµ(v(φ(µ, u, Y1))|U0 = u]) ∀µ ∈ P(X )

Under suitable regularity conditions, such as the weak Feller property of the con-

trolled transition kernel, the compactness of the state space, and the continuity of the

cost function, the existence of an optimal policy for the average cost problem has been

established by the convex analytic method of Borkar [7], also see [23]. Through recent

results in filtering theory which ensures conditions under which the filter process is

weak Feller [25],[19], we can conclude that an optimal solution exists. However, we

note that in these studies an optimal policy, while being a stationary mapping of the

filter, may be a randomized mapping. Nonetheless, the existence question has been

more or less settled and in this chapter, we will assume that an optimal policy exists

as a stationary function of the filter realization.
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Consider a setup where a DM thinks the initial measure is ν, when in reality the

measure is µ. The DM will then implement the control policy γν and incur a cost

J(µ, γν), but if the DM had known the correct prior the cost could have been J∗(µ).

The question of robustness as we are interested studies the difference between these

two terms

J(µ, γν)− J∗(µ) (5.1)

and quantifies the cost the DM incurs for implementing the incorrect policy compared

to the optimal policy.

Robustness is studied in [26] for the single stage cost problem and the infinite

horizon discounted cost problem. The paper provides conditions for when (5.1) goes

to 0 as ν → µ in either weak convergence or total variation distance. We note two

useful results:

Proposition 5.1. [26, Proposition 3.1] Assume the cost function c is bounded, non-

negative, and measurable. Let γν be the optimal control policy designed with respect

to a prior ν. Then we have

J(µ, γν)− J∗(µ) ≤ 2‖c‖∞‖µ− ν‖TV

Theorem 5.1. [26, Proposition 3.2] Assume the cost function c is bounded, non-

negative, and measurable. Let γν be the optimal control policy designed with respect

to a prior ν. Then we have

J∗β(µ, γν)− J∗β(µ) ≤ 2
‖c‖∞
1− β

‖µ− ν‖TV
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While the average cost case is not directly studied in [26], we can adapt the

technique to achieve a similar result for the average cost problem

Theorem 5.2. Assume the cost function c is non-negative, bounded, and measurable.

Then for two priors µ and ν with optimal policies γµ and γν we have

J∞(µ, γν)− J∗∞(µ) ≤ 2‖c‖∞‖µ− ν‖TV

Proof. Consider the robustness difference

J∞(µ, γν)− J∗∞(µ) = J∗∞(ν)− J∗∞(µ) + J∞(µ, γν)− J∗∞(ν)

≤ |J∗∞(ν)− J∗∞(µ)|+ J∞(µ, γν)− J∞(ν, γν) (5.2)

Consider now the difference |J∗∞(µ) − J∗∞(ν)|. If J∗∞(µ) < J∗∞(ν) then the absolute

value of their difference is the larger value J∗∞(ν) minus the smaller value J∗∞(µ). Then

J∗∞(ν) = J∞(ν, γν) since γν is the optimally policy which achieves the infimum over

all policies. If we replace γν with γµ we have J∞(µ, γµ) > J∗∞(ν) and the difference

is even greater. Therefore,

|J∗∞(µ)− J∗∞(ν)| ≤ J∞(ν, γµ)− J∞(µ, γµ)

on the other hand, if we have if J∗∞(µ) > J∗∞(ν) by the same arguement

|J∗∞(µ)− J∗∞(ν)| ≤ J∞(µ, γν)− J∞(ν, γν)
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therefore

|J∗∞(µ)− J∗∞(ν)| ≤ max (J∞(µ, γν)− J∞(ν, γν), J∞(ν, γµ)− J∞(µ, γµ))

and we can ultimately determine the robustness bound by studying the expected cost

operator J∞(·, γν) under different priors but the same control policy.

By same control policy, we mean γν is the optimal control policy designed with

respect to the prior ν. This means the DM sees observations y[0,n], computes the

filter believing the prior is ν, and then employs the control actions. When we study

J(µ, γν) and J(ν, γν) we study two different DM’s experiencing different measurement

realizations, but both believing the prior is ν. This does not mean that both chains

experience some kind of coupled control actions, but only that the mapping from

measurements to control actions is the same for each POMDP with different priors.

Note that for two non-negative bounded sequences 0 < an < m < ∞ and 0 <

bn < k < ∞ we have that the difference of their limsup’s is less than the limsup of

the difference

lim sup
n→∞

an − lim sup
n→∞

bn ≤ lim sup
n→∞

(an − bn)

therefore since c is non-negative and bounded we have

J∞(µ, γν)− J∞(ν, γν)

= lim sup
T→∞

1

T

(
T−1∑
i=0

Eµ,γν [c(Xi, Ui)]

)
− lim sup

T→∞

1

T

(
T−1∑
i=0

Eν,γν [c(Xi, Ui)]

)

≤ lim sup
T→∞

1

T

T−1∑
i=0

(
Eµ,γν [c(Xi, Ui)]− Eν,γν [c(Xi, Ui)]

)
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≤ lim sup
T→∞

‖c‖∞
T

(
T−1∑
i=0

‖P µ,γν ((Xi, Ui) ∈ ·)− P ν,γν ((Xi, Ui) ∈ ·)‖TV

)

then we see that

‖Pµ,γν ((Xi, Ui) ∈ ·)− P ν,γ
ν
((Xi, Ui) ∈ ·)‖TV

= sup
‖f‖∞≤1

∣∣∣∣∫
X×U

f(x, u)Pµ,γ
ν
(dxi, dui)−

∫
X×U

f(x, u)P ν,γ
ν
(dxi, dui)

∣∣∣∣
= sup
‖f‖∞≤1

∣∣∣∣∫
X

∫
X×U

f(x, u)Pµ,γ
ν
(dxi, dui|X0)µ(dx0)−

∫
X

∫
X×U

f(x, u)P ν,γ
ν
(dxi, dui|X0)ν(dx0)

∣∣∣∣
(5.3)

As was discussed, both POMDP use the same control policy, which maps measurements

to control actions in the same way. Once we fix the realization of X0 = x in either case,

the distribution on Y0 is the same, hence the distribution on U0 is the same, and hence

X1, Y1, U1 and so on. Therefore in (5.3) the two inner integrals are the same function of x

and we can upper bound by

sup
‖f̃‖∞≤1

∣∣∣∣∫
X
f̃(x0)µ(dx0)−

∫
X
f̃(x0)ν(dx0)

∣∣∣∣ = ‖µ− ν‖TV

therefore

J∞(µ, γν)− J∞(ν, γν) ≤ lim sup
T→∞

‖c‖∞
T

T−1∑
i=0

‖µ− ν‖TV = ‖c‖∞‖µ− ν‖TV

therefore when the policy is the same and the priors different, J(µ, γν)− J(ν, γν)

is upper bound by the norm of the cost function and the total variation difference of

the priors. Both terms in (5.2) have this bound and the overall bound is multiplied

by a factor of 2.
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If the filter is stable, then an incorrectly initialized filter will merge with the

correctly initialized filter. Since the optimal policy is a stationary function of the

filter, these merging filters act like new priors for the control problem and we can

apply the robustness results from [26] to bound the difference (5.1).

5.2 Incorrect Initialization Costs

Consider the infinite horizon discounted cost problem. Fix a prior µ and a control

policy γν which is optimal with respect to a different prior ν. If we break the condi-

tioning at time n we have

Jβ(µ, γν) = Eµ,γν

[
∞∑
i=0

βic(xi, ui)

]

= Eµ,γν

[
n−1∑
i=0

βic(xi, ui)

]
+ Eµ,γν

[
Eµ,γν

[
∞∑
i=n

βic(xi, ui)|Y[0,n−1]

]]

= Eµ,γν

[
n−1∑
i=0

βic(xi, ui)

]
+ (βn)Eµ,γν

[
Eµ,γν

[
∞∑
i=0

βic(xn+i, un+i)|Y[0,n−1]

]]
(5.4)

Consider the 0th time stage in the problem. X0 is distributed according to µ, an

observation Y0 is made, and the control action u0 = γµ0 (πν,γ
ν

0 ) is a function of the

filter realization believing the prior is ν. The filter realization is the Bayesian update

of the prior ν under the measurement Y0.

Now consider the nth time stage. Conditioned on Y[0,n−1] the distribution of Xn

is πµ,γ
ν

n− (the true predictor). The control action un = γνn(πν,γ
ν

n ) = Φ(πν,γ
ν

n ) is a

stationary function of the false filter realization. Yet the false filter at time n is the
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false predictor πν,γ
ν

n− put through a Bayesian update under the measurement Yn. Note

that throughout we assume that ν � µ, and this ensures that the observer who

believes the prior is ν will not witness observations that have probability 0 under

P ν,γν and thus the filter will be well defined.

Therefore, the optimal policy under prior ν at time n is the same as the optimal

policy under the prior ν ′ = πν,γ
ν

n− at time 0 since it is a stationary function of the

filter realization. We see that the true predictor at time n acts as a new prior for a

restarted control problem, and the new control policy is optimal with respect to the

false filter ν ′ = πν,γ
ν

n− . We then have

Eµ,γν

[
∞∑
i=0

βic(xi+n, ui+n)|Y[0,n−1]

]
= Jβ(πµ,γ

ν

n− , γν
′
)

and therefore

Jβ(µ, γν) = Eµ,γν

[
n−1∑
i=0

βic(xi, ui)

]
+ (βn)Eµ,γν

[
Jβ(πµ,γ

ν

n− , γν
′
)
]

(5.5)

If we instead apply the correctly designed policy γµ and let µ′ = πµ,γ
µ

n− be the correctly

initialized predictor we have

J∗β(µ) = Eµ,γµ

[
n−1∑
i=0

βic(xi, ui)

]
+ (βn)Eµ,γµ

[
Jβ(πµ,γ

µ

n− , γµ
′
)
]

(5.6)

= Eµ,γµ

[
n−1∑
i=0

βic(xi, ui)

]
+ (βn)Eµ,γµ

[
J∗β(πµ,γ

µ

n− )
]

(5.7)
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combining the two

Jβ(µ, γν)− J∗β(µ)

=Eµ,γν

[
n−1∑
i=0

βic(xi, ui)

]
− Eµ,γµ

[
n−1∑
i=0

βic(xi, ui)

]

+βn
(
Eµ,γν

[
Jβ(πµ,γ

ν

n− , γν
′
)
]
− Eµ,γµ

[
J∗β(πµ,γ

µ

n− )
])

=Eµ,γν

[
n−1∑
i=0

βic(xi, ui)

]
− Eµ,γµ

[
n−1∑
i=0

βic(xi, ui)

]

+βn
(
Eµ,γν

[
Jβ(πµ,γ

ν

n− , γν
′
) + J∗β(πµ,γ

ν

n− )− J∗β(πµ,γ
ν

n− )
]
− Eµ,γµ

[
J∗β(πµ,γ

µ

n− )
])

=Eµ,γν

[
n−1∑
i=0

βic(xi, ui)

]
− Eµ,γµ

[
n−1∑
i=0

βic(xi, ui)

]
(5.8)

+βn
(
Eµ,γν

[
J∗β(πµ,γ

ν

n− )
]
− Eµ,γµ

[
J∗β(πµ,γ

µ

n− )
])

(5.9)

+βn
(
Eµ,γν

[
Jβ(πµ,γ

ν

n− , γν
′
)− J∗β(πµ,γ

ν

n− )
])

(5.10)

Therefore, we see that there are in general three costs associated with applying

an incorrectly designed control policy to a control system. The first cost (5.8) can be

thought of as the “past mistakes” cost. At time [0, n− 1] the control policy γν makes

different control decisions than the optimal policy γµ. As such, the costs incurred

from time [0, n− 1] will be different for the optimal control policy and the incorrectly

designed policy.

The second cost (5.9) is the “strategic measure cost”. It is analogous to the DM

operating under it’s own false assumptions from time [0, n − 1] and then at time n

the DM “wakes up” and realizes that the true prior is in fact µ, not ν. As such,

from time n onwards the DM will make optimal control decisions, however it cannot

change the past control decisions U[0,n−1]. As such, P µ,γν and P ν,γµ have different
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strategic measures on (X, Y )[n,∞) and thus incur different costs over the future time

stages even if from time n onwards the DM makes optimal control decisions.

This mirrors the dynamic programming approach taken to compute optimal con-

trol policies. When choosing a control action at a given time stage n, there are two

costs to consider. The first cost is the current cost: the expected cost that will be

incurred at time stage n due to a control action. The second cost is the cost to go: the

expected costs to be incurred in the future based on the control action being made.

In an optimal control policy, these two costs are balanced. If a policy is greedy and

makes the control action at every time stage that minimizes the current cost, it may

result in a poor strategic measure on the future states and thus incur a higher cost

to go. Similarly, if a policy is too forward thinking and only focuses on the cost to

go, then the policy may incur very high cost in the current time stage that outweigh

the benefits of lower expected future costs.

The optimal policy γµ, by nature of being the infimum over all polices, has the

lowest overall cost therefore

Eµ,γ
µ

[
n−1∑
i=0

βic(xi, ui)

]
+ βnEµ,γ

µ
[
J∗β(πµ,γ

µ

n− )
]
≤ Eµ,γν

[
n−1∑
i=0

βic(xi, ui)

]
+ βnEµ,γ

ν
[
J∗β(πµ,γ

ν

n− )
]

the sum of the current costs for time [0, n−1] and the cost to go is less for the optimal

policy (LHS) than a policy which implements the incorrectly designed policy for the

first [0, n − 1] time stages and then makes optimal decisions from time n onwards

(RHS). If we re-arrange this

0 ≤

(
Eµ,γ

ν

[
n−1∑
i=0

βic(xi, ui)

]
− Eµ,γµ

[
n−1∑
i=0

βic(xi, ui)

])

+βn
(
Eµ,γ

ν
[
J∗β(πµ,γ

ν

n− )
]
− Eµ,γµ

[
J∗β(πµ,γ

µ

n− )
])
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we see that the sum of the past mistakes cost and the strategic measure cost is greater

than zero, but that does not mean that each cost individually is greater than 0. For

example, Eµ,γν
[∑n−1

i=0 β
ic(xi, ui)

]
may be less than Eµ,γµ

[∑n−1
i=0 β

ic(xi, ui)
]
, but then

the incorrect control policy will pay a higher price in the strategic measure cost and

the sum of the two costs will be greater than zero.

The third cost (5.10) is the “approximation cost.” The DM does not actually

wake up at time stage n and realize that the true prior is µ rather than ν. Instead,

under predictor stability the falsely initialized predictor πν,γ
ν

n− and the true predictor

πµ,γ
ν

n− merge as time goes on which has a similar effect. However the true and false

predictors are still slightly different and hence the DM incurs the approximation cost.

The results in [26] studying the robustness of optimal costs under merging priors

paired with predictor stability easily show that the approximation cost (5.10) goes to

zero as the predictors merge.

These three costs form the fundamentals of studying the losses a DM incurs for

using an incorrectly designed policy. We can study different control problems that

effect these three costs in different ways, and achieve a notion of robustness: that the

DM does not suffer greatly for using a poorly designed policy under filter stability.

The past mistakes cost essentially cannot be avoided, unless the problem is de-

signed in such a way that this cost is unimportant (see for example the section on

trained control problems or the infinite horizon average cost problem). It takes time

for the predictors to merge, and as such the DM’s mistakes in the first few time steps

simply cannot be avoided until the DM has had time to learn the correct predictor

realization.

The second cost similarly has less to do with the filter stability, and more to do
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with the ergodic nature of the filter update process. If every optimal cost is the

same, that is J∗β(µ) = J∗β(ν) for any prior µ or ν, then this cost goes to zero. For

the discounted cost problem, this is unlikely, but for the average cost problem this

could be possible if the probability measure valued Markov chain defined by the filter

update admits a unique invariant measure.

The approximation cost is directly related to filter convergence. As we see in [26],

via robustness if πµ,γ
ν

n− and πν,γ
ν

n− merge in total variation we have Jβ(πµ,γ
ν

n− , γπ
ν,γν

n− ) →

J∗β(πµ,γ
ν

n− ).

5.3 Trained Control Problems

A control problem where the DM has sufficient time to learn the proper filter realiza-

tion before making any control actions will be called a trained control problem. The

simplest control problem we can consider is a trained one shot control problem. Say

the DM is given a POMP where they cannot influence the development of the state

process and only observe the measurements. They are given a fixed number N and

are allowed to observe the measurements Y[0,N ] and then at time N , they must make

a control action U . The DM’s objective is to minimize Eµ[c(XN , U)]. A diagram of

the problem is presented in Figure 5.1.

Now assume the DM falsely believes the prior is ν, when it is in fact µ and we will

study the robustness difference (5.1). In this problem, there is no past mistakes cost

since the DM does not make control actions or incur costs for the first N time stages.

Similarly, there is no strategic measure cost since the system evolves uncontrolled up

until time N , therefore the DM cannot effect the measure on Y[0,N ] that determines the

filter realization. Therefore, the only penalty the DM suffers for using the incorrectly
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X0 X1 XN

Y0 Y1 YN

U

c(XN , U)
T · · ·

Q Q Q

γ

µ

Figure 5.1: Trained One Shot Control Problem

designed policy in this problem is the approximation cost, and this can be made

sufficiently small by filter stability (note exponential stability of the predictor and

filter are equivalent).

Theorem 5.3. Assume the cost function c is bounded, non-negative, and measurable

and assume the filter is exponentially stable in total variation in expectation with

coefficient α. Then

Eµ[c(XN , γ
ν(Y[0,N ]))]− Eµ[c(XN , γ

µ(Y[0,N ]))] ≤ 4‖c‖∞αN

Proof.

Eµ[c(XN , γ
ν(Y[0,N−1]))]− Eµ[c(XN , γ

µ(Y[0,N−1]))]

=Eµ
[
Eµ[c(XN , γ

ν(Y[0,N ]))|Y[0,N−1]]− Eµ[c(XN , γ
µ(Y[0,N ]))|Y[0,N−1]]

]
=Eµ

[
J(πµN−, γ

πνN−)− J∗(πµN−)
]
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by Proposition 5.1 we have

J(πµN−, γ
πνN−)− J∗(πµN−) ≤ 2‖c‖∞‖πµN− − π

ν
N−‖TV

and by exponential stability we have

Eµ[‖πµN− − π
ν
N−‖TV ] ≤ αN‖µ− ν‖TV ≤ 2αN

This bound is loose and could be replaced with the tighter bound

2‖µ− ν‖TV ‖c‖∞αN

However, the benefit of the bounds presented in the theorem is that it is independent

of the priors µ and ν. Note that ‖µ−ν‖TV ≤ 2, and the idea of the problems we study

is that the DM has the wrong prior ν and does not know the true prior µ. Therefore,

the DM would not know the total variation distance between the false prior and the

true prior, so we think it is best to provide an upper bound the covers the worst case

and therefore applies regardless of the true and false priors.

We can also consider a trained infinite horizon discounted cost problem. Here the

DM again makes measurements Y[0,N ] about the development of a POMP without

incurring any cost or affecting the development of the process. However, at turn

N instead of acting in a one shot control problem, the DM starts an infinite hori-

zon discounted cost problem from time N onwards inuring costs and effecting the
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Figure 5.2: Trained Infinite Horizon Discounted Cost Problem

development of the process. The DM wants to minimize

Eµ[Eµ,γ[
∞∑
i=0

βic(XN+i, Ui)|Y[0,N−1]]]

A diagram of the problem is seen in Figure 5.2.

Corollary 5.1. Assume the cost function c is bounded, non-negative, and measurable

and assume the filter is exponentially stable in total variation in expectation with

coefficient α. Then we have

Eµ[Eµ,γ
ν
[

∞∑
i=0

βic(XN+i, Ui)|Y[0,N−1]]]− Eµ[Eµ,γ
µ
[

∞∑
i=0

βic(XN+i, Ui)|Y[0,N−1]]] ≤ 4
‖c‖∞
1− β

αN

Proof. The proof is the same as Theorem 5.3 except that instead of Proposition 5.1

we apply Theorem 5.1 and have a factor of 1
1−β in our bound.
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5.4 Cost Free Learning Control Problems

Now we turn our attention to a slightly different control problem, a cost free learning

control problem. In a trained control problem, the DM simply observes for the first N

time stages and does not effect the development of the process. In a cost free learning

problem, the DM does not incur costs for the first N stages, however they must still

make control actions at time [0, N −1] that effect the development of the process and

therefore incur a strategic measure cost in addition to an approximation cost in the

robustness problem.

Theorem 5.4. Assume the cost function c is bounded, non-negative, and measurable

and assume the filter is universally exponentially stable in total variation in expecta-

tion with coefficient α. Let

|J | = sup
µ,ν∈P(X )

J∗(µ)− J∗(ν)

|Jβ| = sup
µ,ν∈P(X )

J∗β(µ)− J∗β(ν)

then we have

Eµ,γ
ν
[c(XN , UN )]− Eµ,γµ [c(XN , UN )] ≤ 4‖c‖∞αN + |J |

Eµ,γ
ν
[

∞∑
i=0

βic(XN+i, UN+i)]− Eµ,γ
ν
[

∞∑
i=0

βic(XN+i, UN+i)] ≤ 4
‖c‖∞
1− β

αN + |Jβ|

Proof. First for the single stage problem.

Eµ,γν [c(XN , UN)]− Eµ,γµ [c(XN , UN)]

=Eµ,γν
[
Eµ,γν [c(XN , γ

ν(Y[0,N ]))|Y[0,N−1]]]− Eµ,γµ [Eµ,γµ [c(XN , γ
µ(Y[0,N ]))|Y[0,N−1]]

]
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=Eµ,γν [J(πµ,γ
ν

N− , γ
πν,γ

ν

n− )]− Eµ,γµ [J∗(πµ,γ
µ

N− )]

=Eµ,γν [J(πµ,γ
ν

N− , γ
πν,γ

ν

n− )± J∗(πµ,γ
ν

N− )]− Eµ,γµ [J∗(πµ,γ
µ

N− )]

=Eµ,γν [J∗(πµ,γ
ν

N− )]− Eµ,γµ [J∗(πµ,γ
µ

N− )] (5.11)

+Eµ,γν [J(πµ,γ
ν

N− , γ
πν,γ

ν

n− )− J∗(πµ,γ
ν

N− )] (5.12)

Term (5.11) is then upper bound by |J | while term (5.12) is exactly the expression

in Theorem 5.3 and the result follows.

For the discounted case, the result is the same except for the approximation cost

we use Corollary 5.1.

5.5 On-Line Learning Control Problem

When the DM has the wrong prior, but must start controlling and incurring costs at

the very first time stage we have an on-line learning control problem. Consider an

infinite horizon discounted cost problem. If we assume a non-negative, bounded, and

measurable cost function we have J∗β(µ) ≥ 0 for every µ and Jβ(µ, γ) ≤ ‖c‖∞
1−β for every

µ, γ. Therefore we have a trivial robustness bound

Jβ(µ, γν)− J∗β(µ) ≤ ‖c‖∞
1− β

if we are to get a meaningful bound it must be tighter than this.

Theorem 5.5. Assume the cost function c is bounded, non-negative, and measurable
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and assume the filter is universally exponentially stable in total variation in expecta-

tion with coefficient α. Let

|Jβ| = sup
µ,ν∈P(X )

J∗β(µ)− J∗β(ν)

ρ =

(
‖c‖∞
1− β

− |Jβ|
)(
‖c‖∞
1− β

)−1

(5.13)

f(n) = βn(ρ− 4αn) (5.14)

n∗ =
ln
((

ρ
4

) (
ln(β)

ln(α)+ln(β)

))
lnα

(5.15)

if ρ > 0, α > 0, 1 > β > 0 then for any priors µ� ν we have

Jβ(µ, γν)− J∗β(µ) ≤ ‖c‖∞
1− β

(1−max(f(bn∗c), f(dn∗e))

Proof. Pick any n ∈ N. Starting from expressions (5.8), (5.9), and (5.10) we will

consider the three costs. The past mistakes cost is upper bound by

Eµ,γν

[
n−1∑
i=0

βic(xi, ui)

]
− Eµ,γµ

[
n−1∑
i=0

βic(xi, ui)

]
≤ ‖c‖∞

n−1∑
i=0

βi = ‖c‖∞
(

1− βn

1− β

)

the strategic measure cost is upper bound by

βn
(
Eµ,γν

[
J∗β(πµ,γ

ν

n− )
]
− Eµ,γµ

[
J∗β(πµ,γ

µ

n− )
])
≤ βn|Jβ|

and the approximation cost from Corollary 5.1

βn
(
Eµ,γν

[
Jβ(πµ,γ

ν

n− , γπ
ν,γν

n− )− J∗β(πµ,γ
ν

n− )
])
≤ 4
‖c‖∞
1− β

(αβ)n
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putting these together

Jβ(µ, γν)− J∗β(µ) ≤ ‖c‖∞
(

1− βn

1− β

)
+ βn|Jβ|+ 4

‖c‖∞
1− β

(αβ)n

=
‖c‖∞
1− β

+ βn
(
|Jβ|+ 4

‖c‖∞
1− β

αn − ‖c‖∞
1− β

)
=
‖c‖∞
1− β

(1 + βn(4αn − ρ)))

=
‖c‖∞
1− β

(1− f(n))

This of course holds for any n. If ρ > 0 and α < 1 then there will exist n such that

f(n) > 0 and hence we will get an improvement over the trivial bound. Taking the

derivative in n

d

dn
f(n) = βn (ρ ln(β)− 4 ln(αβ)αn)

then there exists n∗ where

ρ ln(β)− 4 ln(αβ)αn
∗

= 0

for all n less than this value, the derivative is positive and for all n greater than this

value, the derivative is negative hence this value is the global maximizer.

αn
∗

=
(ρ

4

)( ln(β)

ln(α) + ln(β)

)

n∗ =
ln
((

ρ
4

) (
ln(β)

ln(α)+ln(β)

))
lnα

The maximum among the natural numbers n ∈ N will occur at the ceiling or floor of



5.5. ON-LINE LEARNING CONTROL PROBLEM 110

n∗.

The value of ρ is the percent improvement of |Jβ| over the trivial bound, and the

maximum of f(n) is the percent improvement of the robustness bound over the trivial

bound. The higher the maximum, the better the percent improvement.

The maximum of f is larger when β is close to 1, as this puts more weight on later

values and allows for more learning. Also when α is close to 0 as this increases the

rate of filer merging, and when ρ is close to 1 as this means |Jβ| is small relative to

the trivial bound. A reasonable set of values is β = 0.9, α = 0.8, ρ = 0.25. This will

result in a percent of improvement of 2.68% over the trivial bound. If we use more

contrived numbers such as β = 0.95, α = 0.7, ρ = 1 then we have an improvement of

53% over the trivial bound.

This result may be considered a “prior independent” bound since the bound on the

robustness distance does not depend on the actual priors µ and ν being considered.

This is useful when we have no real knowledge of how “close” (in total variation

distance) µ and ν are, thus if they are far apart the bound will not change. As

previously discussed in the introduction to this chapter, [26, Proposition 3.2] provides

a prior dependent bound for the discounted cost problem

Jβ(µ, γν)− J∗β(µ) ≤ 2
‖c‖∞
1− β

‖µ− ν‖TV

When ‖µ − ν‖TV is small, i.e. our priors start close together to begin with, this

bound is actually better than our prior independent bound. However, when they are

far apart it may be that

2‖µ− ν‖TV > 1−max(f(bn∗c), f(dn∗e))
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and our prior independent bound is better. However, we can also use filter stability

to derive a new prior dependent bound which improves upon [26]

Theorem 5.6. Assume the cost function c is bounded, non-negative, and measurable

and assume the filter is universally exponentially stable in total variation in expecta-

tion with coefficient α. Fix two priors µ and ν with µ� ν. Let

σ = (|Jβ|)
(
‖c‖

1− β

)−1

υ = 1− σ

2‖µ− ν‖TV

f = βn(υ − αn)

n∗ =
ln
(
υ ln(β

ln(α)+ln(β)

)
ln(α)

If υ > 0, α > 0, 1 > β > 0 then we have

Jβ(µ, γν)− J∗β(µ) ≤ 2
‖c‖∞
1− β

‖µ− ν‖TV (1−max(f(bn∗c), f(dn∗e))

Proof. As before, we will consider the past mistakes cost, strategic measure cost, and

the approximation cost separately to come to our conclusion. However, this time we

will make use of the actual priors being considered, and not utilize prior independent

bounds.

First the past mistakes cost. For notational convenience let

JN(µ, γ) = Eµ,γ

[
N−1∑
i=0

βic(Xi, Ui)

]
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we then have

Eµ,γν

[
n−1∑
i=0

βic(xi, ui)

]
− Eµ,γµ

[
n−1∑
i=0

βic(xi, ui)

]

=JN(µ, γν)− JN(µ, γµ) + JN(ν, γν)− JN(ν, γν)

≤|JN(ν, γν)− JN(µ, γµ)|+ JN(µ, γν)− JN(ν, γν)

This follows the same structure as the proof of Theorem 5.2. We can show that

|JN (ν, γν)− JN (µ, γµ)| ≤ max (JN (µ, γν)− JN (ν, γν), JN (ν, γµ)− JN (µ, γµ))

we then have

JN(µ, γν)− JN(ν, γν) ≤ ‖c‖∞
n−1∑
i=0

βi‖P µ,γν (Xi, Ui ∈ ·)− P ν,γν (Xi, Ui ∈ ·)‖TV

since the two POMDPs are employing the same policy, we have

‖P µ,γν (Xi, Ui ∈ ·)− P ν,γν (Xi, Ui ∈ ·)‖TV ≤ ‖µ− ν‖TV ∀i ∈ N

and therefore the past mistakes cost is upper bound by

JN(µ, γν)− JN(µ, γµ) ≤ 2‖c‖∞
(

1− βn

1− β

)
‖µ− ν‖TV

the strategic measure cost is upper bound by

βn
(
Eµ,γν

[
J∗β(πµ,γ

ν

n− )
]
− Eµ,γµ

[
J∗β(πµ,γ

µ

n− )
])
≤ βn|Jβ|
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and the approximation cost from a modified version of Corollary 5.1

βn
(
Eµ,γν

[
Jβ(πµ,γ

ν

n− , γπ
ν,γν

n− )− J∗β(πµ,γ
ν

n− )
])
≤ 2
‖c‖∞
1− β

(αβ)n‖µ− ν‖TV

putting these together

J∗β(µ, γν)− J∗∞(µ) ≤ 2‖c‖∞
1− βn

1− β
‖µ− ν‖TV + βn|Jβ|+ 2

‖c‖∞
1− β

(αβ)n‖µ− ν‖TV

=
2‖c‖∞
1− β

‖µ− ν‖TV

(
1− βn + βn|Jβ|

(
2‖c‖∞‖µ− ν‖TV

1− β

)−1

+ (αβ)n

)

=
2‖c‖∞
1− β

‖µ− ν‖TV

(
1− βn +

βn

2‖µ− ν‖TV
|Jβ|

(
‖c‖∞
1− β

)−1

+ (αβ)n

)

=
2‖c‖∞
1− β

‖µ− ν‖TV
(

1− βn
(

1− σ

2‖µ− ν‖TV
− αn

))
=

2‖c‖∞
1− β

‖µ− ν‖TV (1− βn (υ − αn))

=
2‖c‖∞
1− β

‖µ− ν‖TV (1− f(n))

The first term in this exression is the previous bound derived in [26]. If we have

σ ≤ 2‖µ − ν‖TV then we will have υ > 0 and there will exist n where f(n) > 0 and

we will get an improvement over this bound. Taking the derivative in n

d

dn
f(n) =

d

dn
(βn(υ)− βnαn) = βn(ln(β)(υ)− ln(αβ)(α)n)

then there will exist n∗ where

ln(β)(υ)− ln(αβ)(α)n = 0
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for all n less than this value the derivative is positive, and for all n greater than this

value the derivative is negative hence this value is the global maximizer.

αn
∗

=
(υ) ln(β)

ln(α) + ln(β)

n∗ =
ln
(

(υ) ln(β)
ln(α)+ln(β)

)
ln(α)

Note that σ is the ratio of the maximum distance of the optimal cost operator

|Jβ| and the trivial bound ‖c‖∞
1−β . If this ratio is less than double the original total

variation distance 2‖µ− ν‖TV (note total variation distance is between 0 and 2) then

our Theorem 5.6 results in an improved bound over that in [26]. However, this policy

dependent bound may be worse than our policy independent bound in Theorem 5.5.

5.6 Average Cost Problem

We now turn our attention to the infinite horizon average cost problem. Consider

first a trained control problem

Theorem 5.7. Assume the cost function c is bounded, non-negative, and measurable

and assume the filter is exponentially stable in total variation in expectation with

coefficient α. Then

Eµ

[
lim sup
T→∞

Eµ,γν

[
1

T

T−1∑
i=0

c(XN+i, U[0,N+i]|Y[0,N−1]

]

− lim sup
T→∞

Eµ,γµ

[
1

T

T−1∑
i=0

c(XN+i, U[0,N+i])|Y[0,N−1]

]]
≤ 4‖c‖∞αN
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Proof. The distribution on XN given Y[0,N−1] is the true predictor πµN− which acts as

a new prior for a control policy. Since the optimal policy γν is a stationary function

of the false filter realization and γµ is a stationary function of the true filter we have

Eµ

[
lim sup
T→∞

Eµ,γν

[
1

T

T−1∑
i=0

c(XN+i, U[0,N+i])|Y[0,N−1]

]

− lim sup
T→∞

Eµ,γµ

[
1

T

T−1∑
i=0

c(XN+i, U[0,N+i])|Y[0,N−1]

]]

≤ Eµ[J∞(πµN−, γ
πνN−)− J∗∞(πµN−)]

by Theorem 5.2 we have

J∞(πµN−, γ
πνn−)− J∗∞(πµN−) ≤ 2‖c‖∞‖πµN− − π

ν
N−‖TV

and by exponential filter (equivalently predictor) stability

Eµ[‖πµN− − π
ν
N−‖TV ] ≤ αN‖µ− ν‖ ≤ 2αN

Now consider the online learning problem.

Theorem 5.8. Assume the cost function c is bounded, non-negative, and measurable

and assume the filter (equivalently the predictor) is universally stable in total variation

in expectation. Let

|J∞| = sup
µ1∈P(X )

J∗∞(µ1)− inf
µ2∈P(X )

J∗∞(µ2)
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then we have

J∞(µ, γν)− J∗∞(µ) ≤ |J∞|

Proof. Fix some finite n, we have

J∞(µ, γν) = lim sup
T→∞

1

T

(
n−1∑
i=0

Eµ,γν [c(Xi, Ui)] +
T−1∑
i=n

Eµ,γν [c(Xi, Ui)]

)

≤ lim sup
T→∞

1

T

n−1∑
i=0

Eµ,γν [c(Xi, Ui)] + lim sup
T→∞

1

T
Eµ,γν

[
T−1∑
i=n

c(Xi, Ui)

]

≤ lim sup
T→∞

n‖c‖∞
T

+ lim sup
T→∞

1

T
Eµ,γν

[
T−n−1∑
i=0

c(Xn+i, Un+i)

]

= lim sup
T→∞

1

T
Eµ,γν

[
T−n−1∑
i=0

c(Xn+i, Un+i)

]

therefore, we see that no matter what decision the DM makes in the first n time

stages, since n is finite and c bounded this cost will eventually be dominated by the

denominator as T →∞ and there will be no past mistakes cost associated with this

robustness problem. We then claim that

lim sup
T→∞

1

T
Eµ,γν

[
T−n−1∑
i=0

c(Xn+i, Un+i)

]
= lim sup

T→∞

1

T − n
Eµ,γν

[
T−n−1∑
i=0

c(Xn+i, Un+i)

]
(5.16)

All terms in the two limsup expressions are positive and bounded since c is a non-

negative bounded function, therefore we have that

• The difference of the limsups is less than or equal to the limsup of the difference.

• The limsup of a product is less than or equal to the product of the limsups.
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Using these results,

lim sup
T→∞

1

T − n
Eµ,γν

[
T−n−1∑
i=0

c(Xn+i, Un+i)

]
− lim sup

T→∞

1

T
Eµ,γν

[
T−n−1∑
i=0

c(Xn+i, Un+i)

]

≤ lim sup
T→∞

(
1

T − n
− 1

T

)
Eµ,γν

[
T−n−1∑
i=0

c(Xn+i, Un+i)

]

= lim sup
T→∞

(
n

T (T − n)

)
Eµ,γν

[
T−n−1∑
i=0

c(Xn+i, Un+i)

]

≤
(

lim sup
T→∞

n

T

)(
lim sup
T→∞

1

T − n
Eµ,γν

[
T−n−1∑
i=0

c(Xn+i, Un+i)

])

= 0

We then apply iterated expectations and Fatou’s lemma and we have

lim sup
T→∞

1

T − n
Eµ,γν

[
T−n−1∑
i=0

c(Xn+i, Un+i)

]

= lim sup
T→∞

1

T − n
Eµ,γν

[
Eµ,γν

[
T−n−1∑
i=0

c(Xn+i, Un+i)|Y[0,n−1]

]]

≤Eµ,γν

[
lim sup
T→∞

1

T − n
Eµ,γν

[
T−n−1∑
i=0

c(Xn+i, Un+i)|Y[0,n−1]

]]

As was shown for the discounted problem, the optimal control policy is a time invari-

ant function of the filter realization so the predictor at time n acts as a new prior for

the control problem. We then have

Eµ,γν

[
lim sup
T→∞

1

T − n
Eµ,γν

[
T−n−1∑
i=0

c(Xn+i, Un+i)|Y[0,n−1]

]]
= Eµ,γν

[
J∞(πµ,γ

ν

n− , γπ
ν,γν

n− )
]
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With this established, we can now move on to our robustness problem.

J∞(µ, γν)− J∗∞(µ) ≤ Eµ,γν [J∞(πµ,γ
ν

n− , γπ
ν,γν

n− )]− inf
µ̃∈P(X )

J∗∞(µ̃)

= Eµ,γν [J∞(πµ,γ
ν

n− , γπ
ν,γν

n− ) + J∗∞(πµ,γ
ν

n− )− J∗∞(πµ,γ
ν

n− )]− inf
µ̃∈P(X )

J∗∞(µ̃)

= Eµ,γν [J∞(πµ,γ
µ

n− , γπ
ν,γν

n− )− J∗∞(πµ,γ
ν

n− )] + Eµ,γν [J∗∞(πµ,γ
ν

n− )]− inf
µ̃∈P(X )

J∗∞(µ̃)

≤ Eµ,γν [J∞(πµ,γ
ν

n− , γπ
ν,γν

n− )− J∗∞(πµ,γ
ν

n− )] + sup
µ̃∈P(X )

J∗∞(µ̃)− inf
µ̃∈P(X )

J∗∞(µ̃)

= Eµ,γν [J∞(πµ,γ
ν

n− , γπ
ν,γν

n− )− J∗∞(πµ,γ
ν

n− )] + |J∞|

Then by Theorem 5.2 we have

J∞(µ, γν)− J∗∞(µ) ≤ 2‖c‖∞Eµ,γν [‖πµ,γ
ν

n− − π
ν,γν

n− ‖TV ] + |J∞| (5.17)

and this result holds for any n since our choice of n was arbitrary. By assumption,

the predictor is universally stable in total variation in expectation (equivalently the

filter, see Corollary (3.1) ). Therefore, pick any ε > 0. There exists an N such that

for all n > N we have

Eµ,γν [‖πµ,γ
ν

n− − π
ν,γν

n− ‖TV ] ≤ ε

2‖c‖∞

and therefore since (5.17) holds for every n

J∞(µ, γν)− J∗∞(µ) ≤ |J∞|+ ε

for any ε > 0 yielding our result.



5.7. STRATEGIC MEASURE COST 119

Note that this result is significantly improved over the discounted cost problem.

The discounted problem puts more weight on earlier costs than later costs, while the

average cost problems weighs them all equally. The first consequence of this is the

past mistakes cost is 0 in the average cost problem. Secondly, the rate of the filter

merging does not matter. We do not need exponential stability, but only general

total variation stability in expectation. Third, the approximation cost is 0 and the

robustness difference is only the strategic measure cost.

5.7 Strategic Measure Cost

A large gap in these results is the strategic measure cost |Jβ| or |J∞| as these make the

robustness bounds significantly larger for the on-line learning problems. If |Jβ| = 0

then the discounted cost results would be improved as ρ = 1 would be maximized,

but this is not as drastic an improvement as the average cost problem. If it is the case

that |J∞| = 0, then the robustness bound becomes zero for the average cost problem.

That is, the DM suffers no penalty for using the incorrectly designed control policy.

In order for |J∞| = 0, we require the optimal cost operator J∗∞(µ) to be the same

for all priors µ. No matter the starting prior, under optimal control the DM incurs

the same cost. This property has less to do with filter stability, and more with the

ergodic nature of the filter as a stochastic process.

Filter stability guarantees that the true filter and the false filter will merge as n→

∞, however it does not guarantee what limit distribution they will merge towards.

However, if the filter as a stochastic process admits a unique invariant measure on the

space of probability measures, then any initialized filter will merge to this invariant

measure. This implies filter stability, but is indeed stronger as we know the limit
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distribution beforehand.

This result remains future work as the uniqueness of an invariant measure (i.e.

unique ergodicity) of the filter process is still an open problem. With filter stability

alone, the DM can “wake up” at a certain point in the process and start making

optimal control decisions given the environment the DM finds itself in. Yet if the past

control decisions up to that point have placed a poor distribution on the predictor

realization πµ,γ
ν

n− , without guarantees on the difference of the optimal cost operator

|J∞| the DM may not be able to overcome its past mistakes, despite being optimal

for all future time stages.

Additionally, the bounds for the strategic measure difference could be made tighter,

but in a policy dependent sense that cannot be computed directly with current knowl-

edge in the literature. When we consider the strategic measure difference

Eµ,γν [J∗∞(πµ,γ
µ

n− )]− J∗∞(µ) (5.18)

we choose to upper bound this difference with the term |J∞| which is independent of

µ and easily computable. However, if we define the reachable set of a prior µ as all

filter realizations that are achievable under a given prior

R(µ) = {ρ ∈ P(X )|∃n ∈ N,∃y[0,n] ∈ Yn+1 s.t. P µ,γ(Xn+1 ∈ ·|Y[0,n] = y[0,n]) = ρ}

then we can present the tighter bound of

J∞(µ, γν)− J∗∞(µ) ≤ sup
ρ∈R(µ)

J∗∞(ρ)− J∗∞(µ)
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However, this bound is problematic in that is is dependent on the prior µ and further-

more we do not know how to characterize the reachable set R(µ). In future studies of

unique ergodicity of the filter process, one should also study reachability of the filter

process as well to get a better picture of this tighter bound.

5.8 Summary

In this chapter we study the problem of a DM designing an optimal control policy

with respect to the wrong prior distribution ν when the true distribution is µ. The

cost incurred by the DM is then J(µ, γν) when the minimum cost that could be

incurred with the correctly designed policy is J∗(µ). When we investigate robustness,

we consider the difference between these two terms

J(µ, γν)− J∗(µ)

For the single stage cost problem, the infinite horizon average cost problem, and

the infinite horizon average cost problem, when optimal solutions are known to exist

the filter realization is a sufficient statistic for the optimal policy [23],[7]. Thus, filter

stability is closely tied to the DM having accurate information about the state and

thus selecting optimal control decisions.

We show there are three costs associated with a DM employing a falsely initialized

policy: the past mistakes cost, the strategic measure cost, and the approximation cost.

The first two cost are analogous to the DM operating under its false assumptions for

an initial number of time stages N , and then “waking up” for later time stages and

employing the optimal policy from that time on. The poor decisions the DM makes

at times [0, N ] incur a high cost at these times, but also put an undesirable measure
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on the future states. It may be possible that even if the DM starts making optimal

control decisions from time N onwards, it cannot correct the poor position the DM

finds itself in based on its past control actions. The third cost arises since the DM

does not actually wake up at time N , but rather filter stability brings the true filter

and the false filter together which essentially has the same effect.

When the DM is given time to learn the filter before any control actions are

made, the only cost incurred by the filter is the approximation cost which is related

to the total variation distance of the true and false filter. In such problems, the DM’s

learning window is finite and thus exponential stability is required over asymptotic

stability which may not merge fast enough.

If the DM must start controlling and incurring cost from the start of the problem

with the incorrect prior, the DM faces an on-line learning problem. For the infinite

horizon discounted cost problem, the later costs are weighed less than the current

costs. Therefore, the rate of the filter merging is significant and again exponential

stability is necessary. An upper bound on the robustness difference is provided in

Theorem 5.5 which depends on exponential rate of filter stability α, the discount

factor β of the problem, and the maximum distance of optimal cost under different

priors |Jβ|.

For the average cost problem, since all costs are weighed equally the speed of

filter stability is not as important and asymptotic stability, the result appearing in

Chapter 3, is sufficient. Additionally, the robustness cost is entirely determined by

the maximal distance of the optimal cost operator under different priors, |J∞|. An

avenue of future work studies this maximal distance, which is closely tied to the

ergodic nature of the filter as a stochastic process.
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Chapter 6

Conclusions

6.1 Summary

In this thesis we investigate the stability of the non-linear filter in controlled and

control-free environments. As an application of filter stability, we study the robustness

problem of a DM employing a control policy designed with respect to an incorrect

prior. We show how filter stability can bound the penalty the DM incurs for this

mistake.

In Chapter 2, we study filter stability in control-free systems through the lens of

observability. Stability arises via the informative nature of the measurements in rela-

tion to the hidden state process. With successive measurements, the observer gains a

better picture of the state process and corrects the initialization error asymptotically.

We compare different notions of stability under weak stability, total variation, and

relative entropy.

In Chapter 3, we study filter stability in controlled environments. Stability again

follows from observability, but the affect of the control actions on the conditional

distributions adds complications. In general, the one stage observation channel Yn|Xn
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is unaffected by control, thus one step observability still applies. However, the multi-

stage channel Y[n,n+N ]|Xn is influenced by past control actions, and hence N step

observability only applies when the control actions do not influence the transition

kernel. Aside form this distinction, results are identical to Chapter 2.

In Chapter 4, we study filter stability not through observability, but through the

ergodic properties of the filter update kernel. We show that the transition kernel

T is a contraction with a bounded determined by its Dobrushin coefficient, and the

Bayesian update ψ has an upper expansion bound based on the Dobrushin coefficient

of the measurement kernel Q. If the product of contraction coefficient of T and

bound on the expansion coefficient of ψ is less than one, their composed operator

is a contraction in total variation in expectation and thus the filter merges at an

exponential rate.

In Chapter 5, we apply the filter stability results to the problem of a controller

implementing a control policy designed with respect to the wrong prior. For problems

with a finite time window for learning or the infinite horizon discounted cost problem,

exponential filter stability leads to bounds on the robustness difference. In the average

cost problem, asymptotic stability is sufficient to provide a bound that only depends

of the maximal difference of the optimal cost operator under different priors. If this

can be shown to be 0, then the filter incurs no cost for using the incorrectly designed

policy.

6.2 Future Work

For the filter stability problem, there are a number of directions which could be

studied. Results could be extended from discrete stochastic processes as studied here
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to continuous time stochastic processes by reformulating our observability definition

for stochastic differential equations. Additionally, the filter as utilized here is not

finitely computable in practice. Many applications use approximate filters such as the

particle filter or quantization to sacrifice accuracy in the filter estimate for simpler

computation. It would be interesting to study filter stability in conjunction with

these approximate filters.

For robustness, the gap remains of bounding the maximal distance of the optimal

cost operator under different priors |J∞|. If the filter update kernel is shown to admit

an unique invariant distribution, then all optimal costs under different priors are the

same and |J∞| = 0. Future work could investigate conditions for the existence of a

unique invariant measure for the filter update kernel in POMDP, which is currently

an open problem.
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[4] P. Baxendale, P. Chigansky, and R. Liptser. Asymptotic stability of the wonham

filter: ergodic and nonergodic signals. SIAM journal on control and optimization,

43(2):643–669, 2004.

[5] D. Blackwell and L. Dubins. Merging of opinions with increasing information.

The Annals of Mathematical Statistics, 33(3):882–886, 1962.

[6] V.I. Bogachev. Measure Theory, volume 1. Springer Science & Business Media,

2007.



BIBLIOGRAPHY 127

[7] V.S. Borkar. Convex analytic methods in Markov decision processes. In Handbook

of Markov decision processes, pages 347–375. Springer, 2002.

[8] A. Budhiraja and D. Ocone. Exponential stability in discrete-time filtering for

non-ergodic signals. Stochastic processes and their applications, 82(2):245–257,

1999.

[9] P. Chigansky and R. Liptser. On a role of predictor in the filtering stability.

Electron. Comm. Probab, 11:129–140, 2006.

[10] P. Chigansky, R. Liptser, and R. van Handel. Intrinsic methods in filter stability.

Handbook of Nonlinear Filtering, 2009.

[11] P. Chigansky and R. van Handel. A complete solution to Blackwell’s unique

ergodicity problem for hidden Markov chains. The Annals of Applied Probability,

20(6):2318–2345, 2010.

[12] J.M.C. Clark, D.L. Ocone, and C. Coumarbatch. Relative entropy and error

bounds for filtering of Markov processes. Mathematics of Control, Signals and

Systems, 12(4):346–360, 1999.

[13] D. Crisan and K. Heine. Stability of the discrete time filter in terms of the tails of

noise distributions. Journal of the London Mathematical Society, 78(2):441–458,

2008.

[14] I. Csiszár. Information-type measures of difference of probability distributions

and indirect observation. studia scientiarum Mathematicarum Hungarica, 2:229–

318, 1967.



BIBLIOGRAPHY 128

[15] A. D’Aristotile, P. Diaconis, and D. Freedman. On merging of probabilities.

Sankhyā: The Indian Journal of Statistics, Series A, pages 363–380, 1988.

[16] R.L. Dobrushin. Central limit theorem for nonstationary Markov chains. i. The-

ory of Probability & Its Applications, 1(1):65–80, 1956.

[17] R. Douc, E. Gassiat, B. Landelle, and E. Moulines. Forgetting of the initial distri-

bution for nonergodic hidden Markov chains. The Annals of Applied Probability,

20(5):1638–1662, 2010.

[18] R.M. Dudley. Real Analysis and Probability. Cambridge University Press, Cam-

bridge, 2nd edition, 2002.

[19] E.A. Feinbergand, P.O. Kasyanov, and M.Z. Zgurovsky. Partially observable

total-cost Markov decision processes with weakly continuous transition probabil-

ities. Mathematics of Operations Research, 41(2):656–681, 2016.

[20] F. Le Gland and N. Oudjane. Stability and uniform approximation of nonlinear

filters using the Hilbert metric and application to particle filters. The Annals of

Applied Probability, 14(1):144–187, 2004.

[21] R.M. Gray. Entropy and information theory. Springer Science & Business Media,

2011.

[22] O. Hernández-Lerma and J.B. Lasserre. Markov chains and invariant probabili-
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[26] A.D. Kara and S. Yüksel. Robustness to incorrect priors in partially observed

stochastic control. SIAM Journal on Control and Optimization, 57(3):1929–1964,

2019.

[27] S. Kullback. A lower bound for discrimination information in terms of variation.

IEEE Transactions on Information Theory, 13(1):126–127, 1967.

[28] H. Kunita. Asymptotic behavior of the nonlinear filtering errors of Markov

processes. Journal of Multivariate Analysis, 1(4):365–393, 1971.

[29] H.J. Kushner. Introduction to Stochastic Control Theory. Holt, Rinehart, and

Winston, New York, 1972.
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