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A linear algebraic theory of partial coherence is presented that allows precise mathematical definitions of con-

cepts such as coherence and incoherence.

This not only provides new perspectives and insights but also al-
lows us to employ the conceptual and algebraic tools of linear algebra in applications.

We define several scalar

measures of the degree of partial coherence of an optical field that are zero for full incoherence and unity for

full coherence.

The mathematical definitions are related to our physical understanding of the corresponding

concepts by considering them in the context of Young’s experiment. © 2002 Optical Society of America

OCIS codes: 030.0030, 000.5490.

1. INTRODUCTION

The theory of partial coherence is a well-established area
of optics.!™ In this paper, we will see that formulating
the theory in terms of the standard concepts of linear
algebra® leads to a number of new perspectives. While
not containing any new physics, this approach offers new
insights, understanding, and operationality and has the
potential to facilitate applications, especially in optical in-
formation processing.

We restrict our attention to quasi-monochromatic con-
ditions and do not deal with issues of temporal coherence.
We deal with light fields of varying degrees of spatial co-
herence, as characterized by their mutual intensity (auto-
correlation) functions.

In this paper, we consider the case of discrete light
fields, since they lead to a particularly simple matrix-
algebraic formulation without the distractions accompa-
nying discussions of continuous function spaces. Once
the framework is established, it is not difficult to trans-
late the matrix formalism for discrete fields to a continu-
ous formalism. (We indeed present the continuous ver-
sions of many results and relations throughout the
paper.) It may be argued that dealing with discrete fields
is artificial, since optical fields are continuous fields and
most discussions of partial coherence are phrased in clas-
sical continuous analysis. However, the following points
can be raised in response: (i) The discrete formalism pre-
sented here captures virtually all of the essential physics
while being more transparent and easily comprehensible.
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(i1) All continuous fields in essence have only a finite num-
ber of degrees of freedom and can be represented by finite
discrete vectors; in that sense, it can be argued that dis-
crete vectors serve the same representational purpose as
that of functions of continuous variables. In fact, some
would argue that the discrete representation is superior
in that it is less redundant. In any event, discrete and
continuous representations are related to each other
through sampling and interpolation relations.

In Sections 2 and 3, we define a number of matrices
that characterize the second-order correlations of the
field. In Section 4, we mathematically define the limits
of full coherence and full incoherence in terms of these
matrices. In Section 5, we define several measures ¢ of
the degree of partial coherence that interpolate between
these two extremes, where ¢ = 1 for full coherence and
¢ = 0 for full incoherence. Section 6 extends some of
these concepts into the spectral domain, whereas Section
7 discusses these concepts in the context of Young’s ex-
periment.

2. MUTUAL INTENSITY MATRIX

Let £ = [f(1), f(2),..., f(N)]T be a vector representing a
discrete random optical field (mathematically, a finite
random sequence). For simplicity, we deal with one-
dimensional signals, the extension to two dimensions be-
ing straightforward. f may be thought to consist of the
representative samples of a function of a continuous vari-
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able. Both the spatial extent and the resolution of real
systems are finite. Therefore a finite number of samples,
taken at intervals determined by Nyquist’s sampling
theorem,® are sufficient to fully represent continuous sig-
nals. The minimum number of samples needed is usu-
ally given by the space—bandwidth product or, for the
more general case of irregular regions in the space—
frequency plane (phase space), by the space—frequency
area.” The discrete vector constituted from these
samples has the same number of degrees of freedom as
that of the underlying continuous signal; therefore, from
an information perspective, both entities are equally good
at representing the physical field in question. These is-
sues are particularly carefully discussed in Refs. 8-10.
We assume that N is chosen sufficiently large in accor-
dance with Nyquist’s theorem so that the discrete vectors
have enough degrees of freedom to represent the continu-
ous fields of interest.

We assume quasi-monochromatic conditions and con-
centrate on the mutual intensity matrix J¢ of f, defined as

Jp = (ffHh), (D

where the angle brackets denote ensemble averaging (ex-
pectation value) and the superscript H denotes Hermitian
transpose (conjugate transpose). We will simply write J
instead of J; when there is no room for confusion. Let-
ting J(m, n) denote the elements of J, we note that
J(n, n) = I(n) is the intensity of the field and that
>N I(n) is the power. We also define a mean-subtracted
version of the mutual intensity, denoted K¢ and defined as

Ke= ((f— po(f — pp"), (2)

where p; = (f) is the mean of f, a vector whose elements
are the individual means of the elements of f. Letting
K(m, n) denote the elements of K, we note that K(n, n)
= o2(n) is the variance of the field. In the language of
the theory of random processes or statistics, the mutual
intensity matrix J is an autocorrelation matrix, whereas
its mean-subtracted version K is an autocovariance ma-
trix. The relation between J and K is given by J = K
+ memf.

Now the following properties hold for the J and K ma-
trices of any field f (the proofs are omitted where elemen-
tary or well-known®!1):

1. J and K are Hermitian symmetric: J = J% and
K = K%

2. As with all Hermitian symmetric matrices, the ei-
genvalues of J and K are all real.

3. J and K are positive semidefinite, and as with all
such matrices, the eigenvalues are nonnegative. Fur-
thermore, |J(m, n)|? < |J(n, n)||J(m, m)|, and likewise
for K.

4. Eigenvectors corresponding to distinct eigenvalues
will always be orthogonal. Furthermore, as with any
Hermitian symmetric matrix, a complete set of orthogo-
nal eigenvectors can always be found, even when there
are degenerate eigenvalues. Let U denote the matrix
whose columns are the orthonormal eigenvectors. Then
this matrix (known as the modal matrix) will diagonalize
the Hermitian symmetric matrix J or K:
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J = U A, UY, (3)
K= UKAKUE’ (4)

where Ay and Ag are diagonal matrices consisting of the
eigenvalues of J and K along their diagonals. These ex-
pansions are special cases of the singular-value
decomposition.? They can also be written in the more ex-
plicit form

M =

J = N gp Uy, , ()

ol
1

1

N
J(m, n) = kEl Nt gi(m )y (n), 6)

where J(m, n) denotes the elements of J, \ j;, denotes the
kth eigenvalue of J, and ugy,(n) is the nth element of the
kth column of Uy. [A similar expression holds for
K(m, n), the elements of K.] This expression is some-
times referred to as the spectral expansion of J(m, n) or,
since each term in the summation is in the form of an
outer product, as an outer-product expansion. In an op-
tical context, this expression is also known as the
coherent-mode 1"epresentation,12’13 as will be clear in sec-
tion 4.

5. If J or K can be expressed as the outer product of
two vectors u’ and u” in the form u'u"", then Hermitian
symmetry implies that u’ and u” must be parallel, so that
by appropriate scaling J or K can be expressed in self-
outer-product form uu’. That is, any Hermitian sym-
metric matrix that can be written in outer-product form
can also be written in self-outer-product form.

6. The following are equivalent: (i) J or K can be ex-
pressed in self-outer-product form (or, by virtue of prop-
erty 5, merely in outer-product form). (ii) Each row is a
multiple of the other rows. (iii) The rank R of the matrix
is 1. (iv) The matrix has only one nonzero eigenvalue
[Eq. (6)].

7. More generally, the rank of J (or K) is equal to the
number of nonzero eigenvalues.?

We will see in Section 4 that matrices satisfying any of
the equivalent conditions stated in property 6 above cor-
respond to fully coherent light. However, we will have to
define two more matrices before we start discussing co-
herence and incoherence.

Before continuing with our development, we briefly
present continuous versions of some of the results pre-
sented above, which follow from an analogous
formalism.'* If we let f(x) represent a random optical
field (mathematically, a random process), the mutual in-
tensity function J, (xq, x3) of f(x) is defined as

Jr(xq, x9) = (fx)f*(x3)). (7)

Again, we will write J/ instead of J; when no confusion can
arise. J(x, x) = I(x) is the intensity. To save space, we
will not replicate results for the continuous version
Ky (x1, x9) of the matrix K¢. The mutual intensity func-
tion is Hermitian symmetric [J(x1, x3) = J* (x4, x1)],
and as with all such functions, its eigenvalues are all real.
The eigenvalue equation takes the form
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f J(x, xDu(x))dx’ = Nu,(x), (8)

where u ,(x) are the eigenfunctions and X\, are the eigen-
values indexed by ». The mutual intensity function is
also positive semidefinite, and as with all such functions,
its eigenvalues are nonnegative. Positive semidefinite-
ness means that

f f u*(x1)d (21, x9)u(x)dxidey = 0 ©

for any function u(x). As with any Hermitian symmetric
function, it is possible to choose the eigenfunctions to be
orthonormal even when there are degenerate eigenval-
ues:

fm ut()u,(x)dx = S(v — v'). (10)

—©

The continuous counterpart of Eq. (6) is

0

J(xl’ x2) = f }\(V)uv(xl)ut(xQ)dya (11)

where \(v) is the same as A\, and we have assumed a con-
tinuous eigenvalue spectrum. If J(x;, x5) can be ex-
pressed as the “outer product” of two functions u'(x;) and
u"(x9) in the form u'(x{)u"*(x5), then it can also be ex-
pressed in self-outer-product form wu(x;)u*(xy). In a
continuous context, being expressible in outer-product
form is often referred to as separability. J(x;, x5) being
expressible in self-outer-product form is equivalent to its
having a single nonzero eigenvalue: A\(v) = A\¢5(v
— vg) for some vj.

3. NORMALIZED MUTUAL INTENSITY:
COMPLEX COHERENCE MATRIX

If our interest is more in the relative correlations of vari-
ous points of the field but not so much in the absolute in-
tensity of the field, then it is more convenient to work
with the following normalized versions of J and K, respec-
tively:

Loy = o)
Y ) P )BT
J(m, n)
" Tm, md(n, )1 (12)
(LAm) = wm)Lfn) — w(n)]*)
M(m, n) =

[ f(m) — wm)2X|f(n) — u(n)|*)]"?

_ K(m, n)
"~ [K(m, m)K(n, n)]"2’ (13)

where L(m, n) and M(m, n) are the elements of the ma-
trices L and M, the former of which we refer to as the
complex coherence matrix. The diagonal elements of
both matrices are identically unity. Note that M is
merely the complex coherence matrix of the mean-
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subtracted field f — u. M(m, n) is nothing but the stan-
dard statistical correlation factor of the two random vari-
ables f(m) and f(n). 1!

Since L and M are obtained by normalizing J and K in
a particular way, they inherit many of their properties:

1. Hermitian symmetry: L = LY and M = M™Y.

2. The eigenvalues of L and M are all real.

3. L and M are positive semidefinite, and their eigen-
values are nonnegative. Furthermore, |L(m, n)| < 1
and [M(m, n)| < 1.

4. The eigenvectors can be chosen to be orthonormal,
and L and M can be decomposed as in Eqgs. (3) and (5).

5. If L or M can be written in outer-product form, it
can also be written in self-outer-product form.

6. The following are equivalent: (i) L or M can be ex-
pressed in self-outer-product form (or in outer-product
form). (ii) Each row is a multiple of the other rows. (iii)
The rank of the matrix is 1. (iv) The matrix has only one
nonzero eigenvalue.

7. The rank R of L (or M) is equal to the number of
nonzero eigenvalues.

Furthermore, we can state the following additional prop-
erties:

1. The diagonal entries of both L and M are all equal
to 1, corresponding to the fact that each point is by defi-
nition fully correlated with itself.

2. If J (or K) has unit rank, then all elements of L (or
M) have unit magnitude. Conversely, if all elements of L
(or M) have unit magnitude, positive semidefiniteness im-
plies that J (or K) has unit rank.

The complex coherence function L(x;, x5) of a continu-
ous function f(x) is defined as

<f(x1)f* (x2)>
[<|f(x1)|2><|f(x2)|2>]1/2
J(xl’ xZ)

) [J(xq, x1)J (29, x9)]Y2’ (14)

L(xy, x5) =

whose diagonal elements are identically unity and where
|L(xy, x9)| =< 1. Once again, we will not replicate results
for the continuous version M(x;, x5) of the M matrix.
L(x, xy) is Hermitian symmetric and positive semidefi-
nite, and therefore its eigenvalues are real and nonnega-
tive. dJust like J(x;, x5), it can be expanded in terms of
its orthonormal eigenfunctions as in Eq. (11). Ifit can be
expressed in outer-product form, then it can also be ex-
pressed in self-outer-product form. Again, as with
J(x1, x9), being expressible in self-outer-product form is
equivalent to having a single nonzero eigenvalue. In the
case of L(x;, x9), these two conditions are further
equivalent to the magnitude of L(x, x5) being equal to
unity for all x; and x4, that is, |L(x;, x9)| = 1.

4. FULL COHERENCE AND FULL
INCOHERENCE

Full coherence and full incoherence (lack of coherence)
are the two extreme cases of the continuum of partial co-
herence. In most texts, these concepts are introduced
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and discussed for the spatial case through Young’s experi-
ment. Under quasi-monochromatic conditions, temporal
coherence issues can be set aside, and the interference
fringe visibility reflects the degree of coherence of the
light. Fully coherent light results in maximum fringe
depth (greatest visibility), and fully incoherent light re-
sults in zero fringe depth (no visibility). Two samples of
a coherent light field result in interference effects,
whereas samples of an incoherent field do not. For fully
coherent light, we have complex-amplitude superposition,
whereas for fully incoherent light we have intensity su-
perposition. The reader is assumed to be already famil-
iar with these elementary concepts.>!?

Up to this point, we have introduced four different but
closely related matrices that characterize the second-
order correlations of a random optical field and discussed
the properties of these matrices, most of which followed
from Hermitian symmetry and positive semidefiniteness.
Now we will provide a mathematical definition of full spa-
tial coherence and full spatial incoherence in terms of
these matrices.

Underlying the concept of coherence or incoherence of a
field is the statistical correlation of two spatial samples of
that field. In general, a field is considered coherent if
any two samples of the field are fully correlated, and a
field is considered incoherent if any two distinct samples
are fully uncorrelated. Two random variables will be
said to be fully correlated if they are just as correlated
with each other as they are with themselves. Math-
ematically, this may be expressed by the requirement that
the magnitude of their normalized correlation or covari-
ance have the largest possible value of unity. Two ran-
dom variables will be said to be fully uncorrelated if the
magnitude of their normalized correlation or covariance is
as small as possible, namely, zero. In practice, a field can
be said to be effectively coherent or incoherent if, for the
purposes of the optical system in question, the field be-
haves as if it were fully coherent or fully incoherent (for
instance, based on finite apertures or finite resolution).

Although a number of the results stated below concern
the unnormalized matrices J and K, we will see that
working with the normalized matrices L and M has cer-
tain advantages. However, the choice between L and its
mean-subtracted version M is not so clear-cut. This de-
pends on precisely how we wish to define coherence and
incoherence; we leave this choice of definition to the
reader. This issue is further discussed in Section 7 in
conjunction with Young’s two-slit experiment. For the
sake of simplicity in presentation, from now on we work
with the mutual intensity matrix J and the complex co-
herence matrix L. However, we will keep in mind that
we may simply replace J with K and L with M in the fol-
lowing discussion if this is desirable. Choosing to work
with the mean-subtracted version results in a different
definition of full coherence and full incoherence, but this
difference is not an essential one and the concepts con-
verge to the same physical reality when properly inter-
preted.

A. Full Incoherence
First, we consider incoherent fields. Since any two dis-
tinct samples of such a field must be uncorrelated, the
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mutual intensity matrix J and its normalized version, the
complex coherence matrix L, must be diagonal. In fact,
as a consequence of normalization, L is the identity ma-
trix. (Some of the diagonal elements of J may be zero be-
cause the field is zero at those points, in which case the
normalization results in 0/0 indefinite entries; however,
interpreting the zero elements as the limit of very small
elements allows us to consistently maintain that L is the
identity matrix.) Therefore:

A discrete optical field is fully incoherent if the associ-
ated normalized mutual intensity matrix (complex coher-
ence matrix) is the identity matrix, i.e.,

L=1, (15)

or, alternatively, if the associated mutual intensity matrix
J is diagonal.

Though it is trivial, we also note that for the fully inco-
herent case the matrix L is of full rank (R = N), and all
of its eigenvalues are equal to unity. On the other hand,
the J (or K) matrix for an incoherent field need not be full
rank, nor does every full-rank matrix correspond to an in-
coherent field.

We also note that when the matrix J is equal to a scalar
multiple of the identity matrix, the underlying field f is
stationary and referred to as a white-noise process.
When J is diagonal but not equal to the identity, f is non-
stationary and referred to as a colored-noise process.
When the samples of f are independent random variables,
K will be diagonal, and if full incoherence is defined in
terms of the diagonality of K, it follows that f is an inco-
herent field. On the other hand, if full incoherence is de-
fined in terms of the diagonality of J, then f must be a
zero-mean process for J to also be diagonal and thus f is
an incoherent field. When the samples are independent
and identically distributed, K will equal the identity ma-
trix, leading to similar consequences, but with the addi-
tional feature that we now have a stationary field.

B. Full Coherence

Now we consider coherent fields. Any two samples of
such a field must be fully correlated. As discussed above,
this means that the magnitude of their normalized corre-
lation has the largest possible value of unity. Therefore
the elements of the complex coherence matrix L must
have unit magnitude:

A discrete optical field is fully coherent if all elements
of the associated normalized mutual intensity matrix
(complex coherence matrix) have unit magnitude, i.e.,

|IL(m, n)| = 1, m,n=1,...,N, (16)

or, alternatively, if the associated mutual intensity matrix
J has unit rank.

We have already seen that in this case the matrices J
and L both have unit rank, are of outer-product form, and
consequently have only one nonzero eigenvalue (property
6 in Sections 2 and 3 and the following discussion). The
sole nonzero eigenvalue of L is equal to N. (This is easily
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deduced from the fact that for any square matrix the sum
of the eigenvalues is equal to the trace: the sum of the
diagonal elements.)

Full coherence can be alternatively defined through the
requirement that the rank of J or L equal unity, or that J
or L have only one nonzero eigenvalue, or that J or L be
of outer-product form.

If we denote the outer-product form of the L matrix of a
coherent field as L = uu', we see that all elements of u
are also of unit magnitude; that is, the normalized corre-
lation corresponds to the unnormalized correlation of a
field normalized to unit magnitude. This means that the
result of the normalization is to remove the effects of spa-
tial intensity variation from the field. This is desirable,
since we are more interested in the relative correlations of
pairs of points than in the variation of intensity across
the field.

Deterministic fields (fields that are not random pro-
cesses) are coherent. Since the ensemble average is su-
perfluous, the matrix J for such a field is of outer-product
form and hence the field is coherent. On the other hand,
not every coherent field is necessarily deterministic.

C. Stationarity

Another common concept that can be characterized in
terms of the matrices defined is stationarity. Here we re-
strict our attention to second-order stationarity, which
means that second-order correlations depend only on the
separation of the two points in question and not on their
absolute positions. As is common practice, we define sta-
tionarity for a finite domain based on periodic boundary
conditions:

A discrete optical field is stationary if the associated
mutual intensity matrix is circulant:

J(m, n) =J(m — n)modN), m,n=1,....N

an

that is, if the elements on any given circular diagonal are
equal to each other. A circular diagonal is one that wraps
around in the sense of periodic boundary conditions. IfdJ
is circulant, so is L. An alternative approach would be to
define stationarity by requiring that J be Toeplitz instead
of circulant when circular diagonals are replaced with or-
dinary diagonals. However, it is standard practice to
work with circulant matrices in such discrete settings:
they are not only more suitable for analytical formula-
tions but also in fact easier to relate to a continuous
framework.

We conclude this section with the continuous counter-
parts of some of the results presented in Subsections 4.A—
4.C. An optical field is fully incoherent if the associated
complex coherence function is zero except when x; = x4:

L(xq, x9) = 6(x1 — x4)/6(0), (18)

which is equal to unity when x; = x5 by definition [Eq.
(14)]. The eigenfunctions of L(x;, x5) are u,(x) = §(x
— v), and its eigenvalues are all equal to each other:
M) = 1/6(0). With regard to the other limit, an optical
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field is fully coherent if the associated complex coherence
function has unit magnitude for all x; and x5:

|L(xq, x9)| = 1. (19)

In this case, the eigenfunctions satisfy |u,(x)| = 1, and
there is only one nonzero eigenvalue: \(v) = §(v
— vg), as discussed in Section 2. We note that the “ei-
genvalue mass” [“ N(v)dv for both the fully incoherent
case ([7,.[1/6(0)]dv) and the fully coherent case
[[7.8(v — vy)dv] is equal to unity. [The first of these
follows from the identity [”. exp(2mx)dv = 6(x) with
x = 0, whereas the second follows from the definition of
the delta function.] It is more generally possible to show
that [Z N(v)dv = 1 for the eigenvalues of all complex co-
herence functions L(x;, x5); the total eigenvalue mass is
always equal to unity. [This can be shown by setting
x1 = x9 = x in Eq. (11), integrating both sides with re-
spect to x, and using Eq. (10).] In the fully incoherent
case, the unit eigenvalue mass is spread as uniformly and
thinly as possible over all values of v. On the other hand,
in the fully coherent case, the unit eigenvalue mass is
concentrated as much as possible at a single point.
These idealizations are of course just as unphysical as
perfect delta functions and sinusoids of infinite extent; in
reality, the eigenvalue mass will be neither spread out
over an infinite extent nor concentrated at a single point.
Nevertheless, these idealizations serve as useful formal
devices representing limiting cases. Finally, before we
leave this section, we note that an optical field is consid-
ered stationary if J(x;, xo) = J(x; — x9).

5. DEGREE OF PARTIAL COHERENCE OF A
FIELD

Having established the two extremes of full coherence
and full incoherence and provided precise definitions for
them in terms of their normalized correlation matrices,
we now define scalar measures of the degree of partial co-
herence of a field. This can be accomplished by interpo-
lating any of the characteristics of the matrices in ques-
tion. For instance, we saw that the eigenvalues of the
matrix L for incoherent fields are all equal to unity,
whereas only one of the eigenvalues of a coherent field is
nonzero. Thus a suitable function of the eigenvalues
that takes its extremes at these two special cases can
serve as a measure of the degree of partial coherence. Al-
ternatively, we saw that the matrix L for an incoherent
field is diagonal, representing maximum concentration
around the diagonal, whereas the same matrix for a co-
herent field has elements with unit magnitude, represent-
ing maximum spread. Again, a suitable interpolation
will yield a measure of coherence.

There are many ways of constructing such interpola-
tion functions, leading to several definitions of such a
measure, of which we can show some to be identical, some
monotonically related, and some quite different. Here
we will present some of the more obvious candidates for
such a measure. Our purpose here is not to offer an ex-
haustive analysis of these but to motivate the different
possibilities.

All of these measures ¢’ are defined such that their

minimum value c,;, corresponds to full incoherence and
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their maximum value c;,,, corresponds to full coherence
(or the other way around). We will employ the following
mapping to obtain a final measure ¢, which equals zero for
incoherent light and equals unity for coherent light:
¢’ —cf
¢ = : meh ’ (20)
Ccoher — Cincoh

where ¢} and ¢ per

ing to the incoherent and coherent cases (¢
or the other way around).

are the extreme values correspond-
’ — !
incoh — Cmin and

’ o
Ccoher — Cmax>

A. Eigenvalue-Based Measures

As stated above, incoherent light is characterized by all
unity eigenvalues and coherent light by one nonzero ei-
genvalue of the matrix L. We also recall that the eigen-
values are all nonnegative and that their sum is equal to
N.

Definition 1. Based on the observation above, the
more concentrated the eigenvalues are around the largest
one, the more coherent the light, and the more uniformly
spread they are, the more incoherent the light. It will be
convenient to assume that in the general case the eigen-
values are arranged in decreasing order. Therefore the
following measure of the spread of the eigenvalues away
from the largest eigenvalue (which has index n = 1) will
serve as a measure of the degree of partial coherence:

1 N
el = 1721 (n — 1)2\,,. (21)

When all eigenvalues are unity (incoherent light), we
have ¢; = (N — 1)(2N — 1)/6, and when only one eigen-
value is nonzero (coherent light), we have ¢; = 0.

Definition 2. If we think of the distribution of eigen-
values as a function of the index n as constituting a kind
of generalized spectral distribution, then the above mea-
sure essentially corresponds to a spectral spread. The
distribution of values of the eigenvalues can also be mea-
sured without reference to a particular discrete variable
with respect to which they are indexed, and merely as the
spread among a group of numbers; that is, as the variance
of the eigenvalues:

1 N
ey =5 2 O = Y (22)

where the 1 subtracted from A, is the average value of the
eigenvalues. When all eigenvalues are unity, we have
¢y = 0, and when only one eigenvalue is nonzero, we have
cy =N - 1.

Definition 3. The concept of measuring maximal con-
centration versus maximally uniform spread brings to
mind the concept of entropy, which measures maximum
order versus disorder. Therefore the following alterna-
tive to the previous measure naturally asserts itself:

Yo
cy= - —log
’ Zl N

}\") 23
N/’ (23)

where we recall that 3Y_,(A,/N) = 1. The base of the
logarithm is of no consequence. When all eigenvalues
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are unity, we have c; = log N, and when only one eigen-
value is nonzero, we have c; = 0 (since z logz — 0 as
z — 0).

A similar measure was previously proposed in Refs. 9
and 16, based on the eigenvalues of the unnormalized mu-
tual intensity matrix J rather than the normalized com-
plex coherence matrix L that we are employing. Without
normalization, this measure does not properly character-
ize the incoherent limit. Our formulation based on nor-
malized matrices solves this and other problems associ-
ated with the mutual intensity matrix.

Although space does not permit us to further discuss
the relationships between these measures in this paper,
we note that Definitions 2 and 3 (and also Definition 5, to
be given in Subsection 5.B) can be shown to be monotoni-
cally related to each other.

B. Matrix Spread-Based Measures

We now turn our attention from the eigenvalues to the
complex coherence matrix L itself. When L is diagonal,
the light is incoherent, and when L has all unit-
magnitude entries, the light is coherent. Interpolation
between these two extremes leads to the following mea-
sures of partial coherence.

Definition 4. We consider the spatial variance (mo-
ment of inertia) around the diagonal of the matrix L.
Since |L(m, n)| = |L(n, m)| from Hermitian symmetry
and assuming periodic boundary conditions so that
L(m,N +n)=L(m,n) and L(N + m, n) = L(m, n),
we can form the following measure of spread:

N N
¢y =2 2 (m—n)?L(m, n)% (24)

n=1 m=1

When L is the unit matrix (incoherent light), we have
¢y = 0, and when all elements of L have unit magnitude
(coherent light), we have cj =23 (N - D% It
should be noted that cj is not strictly a spatial variance,
since we do not normalize by 3Y_ 3V _|L(m, n)|%. Al-
ternatively, to be truer to the spirit of periodic boundary
conditions, it is possible to replace (m — n)? with
(N —m + n)?2 whenm — n > N/2.

Definition 5. Alternatively, we can ignore the spatial
distribution of the matrix entries and simply measure the
energy of the matrix L. Recalling that elements of L are
always less than or equal to unity and that the diagonal
elements are always equal to unity, we can see that this
measure will be minimum for the unit matrix (incoherent
light) and maximum when all elements have unit magni-
tude (coherent light):

1 N N
c} :FE > |L(m, n)|2. (25)

n=1 m=1

When L is the unit matrix, we have ¢, = 1/N, and when
all elements of L have unit magnitude, we have c¢; = 1.
These and other measures of partial coherence will be
further studied and compared in another paper. Here we
satisfy ourselves by noting that there is no definition that
is clearly superior in all circumstances; different mea-
sures are appropriate for different situations. (For in-
stance, consider the question of whether a mutual inten-
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sity function with a narrow mainlobe and sidelobes, or
one with a wider mainlobe but no sidelobes, is more co-
herent.)

We conclude this section by presenting the continuous
versions of some of the measures of partial coherence dis-
cussed in Subsections 5.A and 5.B. Recall that we al-
ways have AN(v) = 0 and [“_A(v)dv = 1 and that full in-
coherence corresponds to the case where the eigenvalue
mass is spread uniformly over the v axis and full coher-
ence corresponds to the case where the eigenvalue mass is
concentrated at a single point. First, we consider the
continuous counterpart of Definition 2. Consider the
quantity [ A\2(v)dv. In the fully incoherent limit, this
integral evaluates to 1/6(0) = 0. As we approach the
fully coherent limit, this integral tends to §(0) = «. To
map this to a measure taking values in the interval [0, 1],
we employ the inverse tangent function (other suitable
smooth functions may also be used). Therefore our mea-
sure takes the form

J' N(v)dv

—

2

cy = —arctan
T

) (26)

which is zero for full incoherence, is unity for full coher-
ence, and takes on intermediate values for general par-
tially coherent fields. Now let us consider the continuous
counterpart of Definition 3. The definition of entropy
that is the underlying motivation of this definition is of
the form —3,p;logp;,, where p, are probabilities such
that ,p, = 1. The continuous counterpart of this defi-
nition of entropy is —[p(v)logp(v)dv such that [p(v)dv
= 1. Since [Z_A(v)dv = 1 and \(v) = 0, the distribu-
tion of the eigenvalue mass can be interpreted as a prob-
ability density function, and therefore we can form the
quantity —[” A(»)log \(v)dv based on the same motiva-
tion as that in the discrete case. This quantity tends to
plus infinity for the fully incoherent limit and to minus in-
finity for the fully coherent limit. Therefore we define
our measure as

1
cg3 = —arctan
a

f Nwv)logA(v)dv| + 2 (27)

which again is zero for full incoherence, is unity for full
coherence, and takes on intermediate values in the gen-
eral case. For concreteness, the base of the logarithm
may be chosen as e. Although not presented here, ex-
pressions for the continuous versions of the spread-based
measures can also be written.

6. FOURIER-DOMAIN ANALYSIS

In Section 4, we stated the definitions of coherence and in-
coherence in terms of autocorrelations (or autocovari-
ances) of the original field f. Here we wish to state the
equivalent conditions for coherence and incoherence in
the Fourier domain.

Let us denote the discrete Fourier transform of the dis-
crete optical field f by f = Ff, where F is the N X N uni-
tary discrete Fourier transform matrix defined by
F(m, n) = N 2 exp(—i2amn/N).

Let us find the mutual intensity matrix J3 of the Fou-
rier transform of the optical field:
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J3 = (Ff(Ff)T) = FJF (28)

We observe that the mutual intensity of the Fourier
transform is the double Fourier transform of the mutual
intensity of the original.

We know that a circulant J matrix corresponds to a sta-
tionary random process. (If the matrices in question rep-
resented the kernel of a linear system, a circulant matrix
would represent a linear-shift-invariant system.) Com-
plex harmonics are known to be the eigenvectors of circu-
lant matrices. Therefore the discrete Fourier transform
matrix, whose columns are the complex harmonics, will
diagonalize any circulant matrix®:

Ay = FJFH, (29)

First, let us assume that J; is circulant, corresponding
to a stationary optical field. Then J3 will be diagonal.
In other words, a stationary optical field is characterized
by a circulant matrix in the space domain but by a diag-
onal matrix in the Fourier domain. Now let us assume
that J; is diagonal, corresponding to an incoherent optical
field. Then J% will be circulant. In other words, an in-
coherent optical field is characterized by a diagonal ma-
trix in the space domain but by a circulant matrix in the
Fourier domain. We may summarize by saying that in-
coherence and stationarity are Fourier duals (or conju-
gates).

If we assume that J; is of unit rank, then it is possible
to show that J7 is also of unit rank. In other words, a
coherent field is represented by a unit-rank matrix in
both the space and Fourier domains. Since matrices of
this form represent coherent fields, we may say that co-
herence is its own Fourier dual. (This is also consistent
with the fact that if a field is deterministic, its Fourier
transform will also be deterministic.)

If we restrict our attention only to second-order station-
arity and do not pay attention to a possible nonstationar-
ity in the mean, the circulantness of K can be taken as an
alternative definition of stationarity. In this case, the
above discussion can also be taken to be valid for K.
However, it should be noted that K7 # FKF,

7. YOUNG’S EXPERIMENT AND
CORRELATION VERSUS COVARIANCE

The purpose of this section is to consider the superposi-
tion of two random variables, which may represent two
samples of an optical field, and discuss how the intensity
of the superposed field depends on the correlation or the
covariance of these two random variables. This will lead
us to discuss the use of correlation (J or L) versus that of
covariance (K or M) in characterizing partially coherent
fields.

Traditionally, the concepts of spatial coherence and in-
coherence are motivated in terms of the visibility of
fringes in  Youngs experiment under quasi-
monochromatic conditions. The visibility is usually de-
fined as the ratio of the difference between the maximum
and minimum intensities to the sum of the maximum and
minimum intensities. Incoherent light is associated with
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zero fringe visibility, whereas coherent light is associated
with maximum fringe visibility. Maximum fringe visibil-
ity corresponds to maximum constructive/destructive in-
terference, where the two complex amplitudes are added
or subtracted with full force. Zero visibility corresponds
to complete lack of interference, where the intensities are
added without any cross terms. Therefore our tradi-
tional understanding of coherence and incoherence has to
do with the ability or the lack of ability to constructively
or destructively interfere.

Let the complex amplitude of light represented by
these two random variables be denoted by f;
= A exp(i¢y) and fy = Ay exp(idy), where A;, A,, &1,
and ¢, are real. The total observed field is f = f;
+ foexp(ia), where « is the phase difference associated
with the path-length difference in Young’s experiment.
Let us further denote the ensemble-averaged mean of f;
by w; and that of 5 by uy. Then we can write f; = u;
+ g, and similarly for f,, where g; is a zero-mean ran-
dom variable. Thus any nonzero-mean random variable
can be interpreted as the sum of a nonrandom number
and a zero-mean random variable. The intensity I
= (|f1 + fo expi@)|?) resulting from the superposition of
f1 and f, can be written in two alternative but equal
forms:

I =1, + I, + 2VI,I,|Lys|cos[ £ (Lyy) — a]  (30)
= |u1® + Py + |uol® + Py
+ 2\/}E|M1M§/\/ﬁ + My
% cos[ £ (uyui/NP1Py + Myy) — al,  (31)

where P; =(|gi*), I =(|fi]*), and thus I; = [u]?
+ P;. Weuse 2£(z) to denote the argument of z. In de-
riving the second of these expressions, we used a trigono-
metric formula for the sum of two cosines. The first of
these expressions has been expressed in terms of the nor-
malized non-mean-subtracted (correlation) L-matrix en-
try Lo = (f1f5)/NI1I5, and the second has been ex-
pressed in terms of the normalized mean-subtracted
(covariance) M-matrix entry M, = (g18%)/\P1P5. The
above expressions take their extreme values over « (in
terms of which visibility is defined) when the cosine term
is equal to =1. Thus the visibility, defined as the ratio
(max — min)/(max + min), is given by

2 V1112|L12|

Visibility = [, (32)
1 2
B 2P Pyl s/ NP1Py + My 33)

|wil® + Py + |pg|® + Py

When the means w; and u, are equal to zero, both of
the above expressions become identical. In this case,
I; = P;and M5 = Liy. In the case of incoherent light,
we expect intensity addition and no cross terms (zero vis-
ibility), implying that |Lis| = [M 5] = 0. In the case of
coherent light, we expect complex-amplitude addition
(maximum visibility), implying that |Lqo| = |[M1s| = 1.
Therefore we see that the mathematical definitions of co-
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herence and incoherence offered in Section 4 are consis-
tent with the traditional understanding of these concepts
when the means are zero.

Now we turn our attention to the general nonzero-
mean case, when Egs. (30) and (31) [or Egs. (32) and (33)]
are no longer identical. Intensity addition (no interfer-
ence) means that the resultant intensity is given by I,
+ I, and therefore that the visibility is zero. If we asso-
ciate incoherence with intensity addition and zero visibil-
ity, it follows that |Lq,| = 0, but the same cannot be said
for [Mo|. If|Mis| = 0, the resultant intensity is given by
I + Iy + 2|pqpolcos[£(uius)—a]. We observe that al-
though the correlation of the mean-subtracted part is
zero, the deterministic parts corresponding to the nonzero
means lead to an interference term that violates strict in-
tensity addition. (In other words, the mean field behaves
like a deterministic coherent component, so that a field
with nonzero mean cannot be strictly incoherent if we as-
sociate incoherence with intensity addition.) However, if
we choose to define incoherence with the alternative con-
cept of intensity addition of the mean-subtracted parts
only (P = P; + P,), treating the means as mere insig-
nificant biases, then for this definition of incoherence it
follows that |[M 5] = 0 but that |L| # 0.

Complex-amplitude addition (full interference) means
that the extremes of the resultant intensity are given by
I, + I, + 21,1, and that the visibility is 2\I,I,/(I,
+ I,). If we associate coherence with complex-
amplitude addition and maximum visibility, it follows
that |L5| = 1, but the same cannot be said for [M,|. If
M5 = 1, the normalized correlation of the mean-
subtracted parts is unity, but as a whole, complex-
amplitude addition is violated. However, if we choose to
define coherence with the alternative concept of complex-
amplitude addition of the mean-subtracted parts only
(P =Py + Py = 2\PP,), treating the means as mere
insignificant biases, then for this definition of coherence it
follows that |M 15| = 1 but that |Lo # 1.

In summary, we have shown that defining coherence
and incoherence in terms of the normalized complex co-
herence matrix L is appropriate if we expect incoherence
to be characterized by intensity addition and coherence to
be characterized by complex-amplitude addition of the
whole fields, including any nonzero-mean components.
On the other hand, it is appropriate to use the mean-
subtracted matrix M if the means of the fields are treated
as insignificant biases and are ignored. The use of the
mean-subtracted K and M matrices is more consistent
with the definition of the correlation coefficient of two
random variables as commonly used in statistics and
probability theory.'! On the other hand, the mutual in-
tensity matrix J and the complex coherence matrix L are
more established in optics.

8. CONCLUSION

In this paper, we set the foundations of a linear algebraic
theory of partial coherence. While containing no new
physics, the presented formulation allows precise defini-
tions of concepts such as coherence and incoherence, of-
fers new insights, and allows us to make the most of the
conceptual and algebraic tools of linear algebra. This pa-
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per was mainly formulated in the discrete notation of vec-
tors and matrices, but continuous versions of many re-
sults and relations were also presented.

We offered several definitions for the degree of partial
coherence of a light field ¢ such that ¢ = 0 for full inco-
herence and ¢ = 1 for full coherence. A complete study
of the various alternatives and their comparison will be
the subject of another paper.

We carefully discussed Young’s experiment to clearly
show the relationship between our physical understand-
ing of the concept of coherence and the mathematical defi-
nitions presented in this paper. In particular, we dis-
cussed the relative merits of using correlation or
covariance functions as the basis for our definitions.

We believe that the formulation presented will be espe-
cially useful in optical information processing applica-
tions, since it will allow the precise analytical and nu-
merical formulation of such problems. In particular, in a
further paper we will discuss how the present formalism
can be applied to the problem of synthesizing light with
desired mutual intensity distributions from light with
given mutual intensity (previous attempts at dealing with
this problem include Refs. 17-20). It may also be of in-
terest to explore the relationship of the quantities dis-
cussed in this paper to measures of beam quality as ap-
plied to partially coherent beams.?!

The corresponding author, Haldun M. Ozaktas, may be
reached by e-mail, haldun@ee.bilkent.edu.tr.
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