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Abstract— Online Convex Programming (OCP) is a recently
developed model of sequential decision-making in the presence
of time-varying uncertainty. In this framework, a decision-
maker selects points in a convex feasible set to respond to
a dynamically changing sequence of convex cost functions.
A generic algorithm for OCP, often with provably optimal
performance guarantees, is inspired by the Method of Mirror
Descent (MD) developed by Nemirovski and Yudin in the 1970’s.
This paper highlights OCP as a common theme in adaptive
control, both in its classical variant based on parameter tuning
and in a more modern supervisory approach. Specifically,
we show that: (1) MD leads to a generalization of classical
adaptive control schemes based on recursive parameter tuning;
(2) A supervisory controller switching policy that uses OCP to
estimate system parameters from a sequence of appropriately
regularized output prediction errors can flexibly adapt to
presence or absence of output disturbances in the system.

I. INTRODUCTION

A. Certainty equivalence and adaptive control

Suppose we have an unknown discrete-time deterministic
linear SISO system Σ with input (control) sequence {ut}
and output sequence {yt}. We wish to adaptively control
Σ so as to achieve output regulation, i.e., drive the output
to zero, whenever the noise and disturbance signals are
zero. Moreover, all system signals must remain bounded in
response to arbitrary bounded noise and disturbance signals.
Similar considerations apply to stochastic systems.

Suppose we have an indexed class of models M = {Σθ :
θ ∈ Θ}, where Θ is a compact convex subset of a finite-
dimensional linear space, and we have reason to believe
that there is some θ∗ ∈ Θ, such that Σ is reasonably well
modeled by Σθ∗ . Suppose we also have an indexed class of
controllers K = {Kγ : γ ∈ Γ}, where Γ is either a finite
set or a compact subset of a finite-dimensional linear space,
and a model-to-controller mapping χ : Θ→ Γ, such that, for
each θ ∈ Θ, Kχ(θ) achieves “satisfactory” performance on
Σθ. A wide variety of adaptive control schemes is based on
the “certainty equivalence” heuristic: at each time step, the
choice of the controller is based on the current estimate of the
system model given all currently available information. We
can specify a generic certainty-equivalent adaptive control
(CEAC) scheme by a tuple (M,K, χ, π, δ), whereM, K and
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χ have already been defined, π is a sequence of mappings
πt : Rt × Rt−1 → Θ that serve as model parameter
estimators, and δ is a sequence of mappings δt : Rt×Rt−1 →
{0, 1} that are used to decide whether to switch to a new
controller or to keep the currently used one. The operation
of the scheme is displayed in Algorithm 1.

Algorithm 1 A Generic CEAC Scheme
for t = 0, 1, . . . do

Compute the parameter estimate θt = πt(yt, ut−1)
Compute βt = δt(yt, ut−1)
Let γt = βtχ(θt) + (1− βt)γt−1

Switch Kγt into the loop
end for

Example 1 (Classical adaptive control based on recursive
parameter updates). Let M consist of models of the form

Σθ : Aθ(z−1)yt+1 = Bθ(z−1)ut + wt+1 (1)

where Aθ(z−1) = 1−
∑p
i=1 aiz

−i, Bθ(z−1) =
∑q
i=0 biz

−i

are polynomials in the unit-delay operator z−1, parametrized
by θ = (a1, . . . , ap, b0, . . . , bq)T ∈ Rp+q+1, and {wt} is a
scalar disturbance process. Let Γ ≡ Θ and to each θ ∈ Θ
associate the controller

Kθ : Gθ(z−1)ut = Hθ(z−1)yt, (2)

where Gθ(z−1) = Bθ(z−1), Hθ(z−1) = −
∑p
i=1 aiz

−(i−1).
We assume that for each θ ∈ Θ the feedback interconnection
of Σθ and Kθ is minimum phase, and so let χ(θ) ≡ θ.

Let θt = πt(yt, ut−1) be a sequence of recursively
computed parameter estimates, and let δt(yt, ut−1) ≡ 1 for
all t and all (yt, ut−1). This is the classical one-step-ahead
direct adaptive control (see, e.g., Goodwin and Sin [1]).

Example 2 (Supervisory control). Let {ut} and {yt} denote
the input and output sequences of Σ. To construct the class
of models M, we first define a family of observers O =
{Oθ : θ ∈ Θ} with a common state realization

Oθ : vt+1 = Avt +Byt +Dut (3a)

yθt = Cθvt (3b)

The corresponding model class M = {Σθ : θ ∈ Θ} is
obtained by injecting yθt back into Oθ, leading to

Σθ : xθt+1 = (A+BCθ)xθt +Dut (4a)

yθt = Cθx
θ
t (4b)



To define the controllers, we assume that Γ is a finite set and
let K = {Kγ : γ ∈ Γ} consist of models with a common
state realization

Kγ : zt+1 = Fγzt +Gγyt (5a)
ut = Hγzt + Sγyt (5b)

The feedback interconnection of Σθ and Kγ has the state-
space representation(

xt+1

zt+1

)
=
(
A+BCθ +DSγCθ DHγ

GγCθ Fγ

)
︸ ︷︷ ︸

Aθγ

(
xt
zt

)
(6a)

yt =
(
Cθ 0

)(xt
zt

)
(6b)

Assume that there exists a partition Θ =
⋃
γ∈Γ Θγ , such

that every Θγ is compact and Kγ is a good controller for
all {Σθ : θ ∈ Θγ}, and let χ(θ) = γ if θ ∈ Θγ . We assume
also that the system Σθ is detectable.

To construct π, define for each θ ∈ Θ the output prediction
error et(θ) , yθt − yt. Now, choose a sequence {at} of
nonnegative reals, not all of which are zero, define

Jt(θ) ,
t∑

τ=0

at−τ |eτ (θ)|2, ∀t ≥ 0, θ ∈ Θ

and let θt = πt(yt, ut−1) , arg minθ∈Θ Jt(θ). To construct
δ, choose positive sequences {ht}, {εt} and let

βt = δt(yt, ut−1)

,

1, if (1 + ht)Jt(θt) ≤ min
θ∈Θγt−1

Jt(θ)− htεt

0, otherwise

The (discrete-time variant of) scale-independent hysteresis-
based switching [2] is a special case of this construction
(which was analyzed in [3]).

B. Common themes and our contribution

Speaking conceptually, the purposes of π and δ in a CEAC
scheme are distinct: the former estimates the best model
given the current data, while the latter determines whether
to the controller currently in the loop is to be replaced
with one matched to the latest model estimate. In general,
therefore, the tasks of gathering information about the system
and deciding how to control it are separated. This is similar
to the distinction between the averaging step in stochastic
approximation (SA), which generates approximate solutions,
and the SA update itself, which gathers information about the
unknown objective function [4], [5]. The hysteresis switching
policy of Example 2 illustrates this separation principle quite
nicely: the new model estimate affects the controller selection
only if it does significantly better than the current controller.
There is no such separation in Example 1, although it is
possible to implement a parameter update scheme based on
SA trajectory averaging.

Another common theme underlying both examples is that,
in order to obtain the parameter estimates, one has to solve a

time-varying sequence of optimization problems, which are
often convex in the underlying parameter θ. Convexity plays
an important role in control, both as an analytic technique
[6] and as a structural characteristic permitting efficient
solution of a wide variety of problems in controller design,
verification, and implementation [7]. The contribution of the
present paper is a unifying perspective on parameter estima-
tion in adaptive control (both in its classical variant based on
parameter tuning and in a more recent supervisory approach
based on controller switching) through the concept of online
convex programming and the Mirror Descent scheme of
Nemirovski and Yudin [4], [5], [8]. At this point, we are
not aiming for a definitive treatment; our goal in this paper
is to look at a fundamental topic in control theory from a
fresh perspective and hopefully to stimulate further research,
both in the optimization and in the control communities.

II. ONLINE CONVEX PROGRAMMING AND THE METHOD
OF MIRROR DESCENT

The term “Online Convex Programming” (OCP) [9] refers
broadly to a class of problems where a decision-maker
sequentially chooses points in a convex set in response to
a time-varying sequence of convex cost functions. Formally,
OCP is a game between two players, the Decision-Maker
(DM) and the Environment (E), specified by a pair (Θ,L),
where Θ ⊂ Rn is a compact and convex and L is a class of
convex functions ` : Θ→ R, which unfolds as follows:

Algorithm 2 Online Convex Programming
for t = 0, 1, 2, . . . do

DM chooses θt ∈ Θ
E chooses `t ∈ L and reveals it to DM
DM suffers loss `t(θt)

end for

In the learning theory community, OCP has emerged as one
of the basic models of sequential (online) learning processes.
In that context, the objective of the DM, for each horizon
T , is to minimize the regret, i.e., the difference between the
total cost

∑T
t=0 `t(θt), and the smallest total cost that could

have been achieved in hindsight by a single θ ∈ Θ. Then
learning is synonymous with Hannan consistency1, i.e., the
existence of a strategy that achieves regret sublinear in T .

Now, regret does not play such a major role in the context
of control. Nevertheless, as we shall show, the same tech-
nique used in learning theory to achieve Hannan consistency
will lead to good adaptive control strategies. This technique
is based on the method of Mirror Descent (MD) developed by
Nemirovski and Yudin [4] as a robust alternative to standard
projected subgradient methods (cf. [5], [8]). The structure of
MD hinges on the concept of a distance-generating function
and its induced Bregman divergence [11]:

Definition 1 (Distance-generating function). Fix an arbitrary
norm ‖ · ‖ on Rn. A function ω : Θ → R is a distance-

1This term reflects J. Hannan’s seminal work on learning Bayes optimal
policies in repeated games [10].



generating function with modulus α > 0 with respect to ‖·‖,
provided it has the following properties:

1) ω is convex and continuous on Θ
2) The set Θ◦ , {θ ∈ Θ : ∂ω(θ) 6= ∅}, where ∂ω(θ)

denotes the subdifferential of ω at θ, is convex
3) Restricted to Θ◦, ω is C1 and strongly convex with

parameter α > 0, i.e., for all θ, θ′ ∈ Θ◦

ω(θ′) ≥ ω(θ) +∇ω(θ)T(θ′ − θ) +
α

2
‖θ − θ′‖2.

Definition 2 (Bregman divergence). Let ω be a distance
generating function on Θ. Then the Bregman divergence
induced by ω is the function Dω : Θ×Θ◦ → R+ defined by

Dω(θ, θ′) , ω(θ)− ω(θ′)−∇ω(θ′)T(θ − θ′).

As an example, take ω(θ) = 1
2‖θ‖

2
2. Then Dω(θ, θ′) = 1

2‖θ−
θ′‖22; see [5], [8] for other examples.

Lemma 1 (Properties of Bregman divergences). Dω(·, ·) is
nonnegative and strongly convex: Dω(θ, θ′) ≥ α

2 ‖θ − θ
′‖2

for all θ, θ′ ∈ Θ◦. Moreover for any θ ∈ Θ and θ′, θ′′ ∈ Θ◦,

Dω(θ, θ′) +Dω(θ′, θ′′)−Dω(θ, θ′′)
= (∇ω(θ′′)−∇ω(θ′))T(θ − θ′) (7)

Now, following Nemirovski et al. [5], define for every
θ ∈ Θ◦ the prox-mapping Πθ : Rn → Θ◦ as follows:

Πθ(ξ) , arg min
θ′∈Θ

[ξT(θ′ − θ) +Dω(θ′, θ)] (8)

The method of Mirror Descent is shown in Algorithm 3,
where {ηt} is a decreasing sequence of nonnegative step
sizes and ∇̄`t(θt) is an arbitrary subgradient of `t at θt.

Algorithm 3 Mirror Descent
Choose an arbitrary θ0 ∈ Θ
for t = 0, 1, 2, . . . do

Receive `t ∈ L and incur loss `t(θt)
Output θt+1 = Πθt

(
ηt∇̄`t(θt)

)
end for

The following lemma (cf. [5] for the proof) is basic:

Lemma 2. For every θ ∈ Θ, the MD updates satisfy

Vt+1(θ) ≤ Vt(θ) + ηt∇̄`t(θt)T(θ − θt) +
η2
t ‖∇̄`t(θt)‖2∗

2α
,

where Vt(θ) , Dω(θ, θt), and ‖ · ‖∗ denotes the norm dual
to ‖ · ‖ defined via ‖u‖∗ = sup‖v‖≤1 v

Tu.

We close this section with a discussion of computational
issues. First of all, it can be shown that the MD updates can
be computed recursively as follows [8]: Suppose that we can
efficiently compute the Legendre–Fenchel dual of ω, defined
as Ω(ξ) , supθ [ξTθ − ω(θ)]. Suppose also that ω is steep,
i.e., for any sequence {θk} converging to a boundary point
of Θ, we have ‖∇ω(θk)‖∗ → +∞. Then at time t the MD
update takes the following form:

ξt+1 = ∇ω(θt)− ηt∇̄`t(θt), θt+1 = ∇Ω(ξt+1) (9)

This structure is what gives the MD method its name: the
current point θt is mapped to its “mirror image” in the dual
space ∇ω(Θ), updated via gradient descent, then mapped
back to Θ by means of the inverse mapping ∇Ω. When all
`t are equal to the same C1 function `, we can view (9) as
a discretization of the following continuous-time evolution:

ξ̇(t) = −∇`(∇Ω(t)), θ(t) = ∇Ω(t). (10)

Denoting by θ∗ any minimizer of ` on Θ, we can show that
V (ξ) , DΩ(ξ,∇ω(θ∗)) is a Lyapunov function for (10), i.e.,
it decreases along any trajectory of (10); in fact, this was the
motivation originally given by Nemirovski and Yudin [4].

III. ADAPTIVE CONTROL BASED ON PARAMETER TUNING

We now consider the setting of Example 1. For future
convenience, let us cast the model (1) in the regressive form

Σθ : yt+1 = φT

tθ + wt+1, (11)

where φt , (yt, . . . , yt−p−1, ut, . . . , ut−q)T. We assume that
the true system Σ has the form Σθ∗ for an unknown θ∗ ∈ Θ.

Let {ut} be an arbitrary sequence of inputs, and let {yt}
be the resulting sequence of outputs, yt+1 = φT

tθ
∗ + wt+1.

For each t = 0, 1, 2, . . . define the loss functions

`t(θ) = (yt+1 − φT

tθ)
2. (12)

Let L denote the class of all functions of the form (12) as
θ∗ ranges over Θ and {ut} ranges over all arbitrary control
sequences. Hence, we can cast our adaptive control problem
as an instance of OCP over L, but with an additional twist: at
time t, we set ut ourselves and therefore have full knowledge
of φt. The only unknown is yt+1, which is revealed to us
once we apply the control ut. What is essential is that, by
modifying ut, we adjust one coordinate of φt to ensure that
φT
tθt = 0. Hence, we have `t(θt) = y2

t+1. Furthermore, in
the absence of disturbances (wt ≡ 0 for all t), the loss of θ∗

is zero: `t(θ∗) ≡ 0 for all t. We now show the following:

Theorem 1. Assume that there are no disturbances, wt ≡ 0
for all t. Choose a norm ‖·‖ on Rn, a constant α > 0, and a
(α, ‖ · ‖) distance-generating function ω on Θ. For each t =
0, 1, 2, . . . let ηt , a

c+‖φt‖2∗
for some c > 0, 0 < a < α

2 . Then
the MD scheme for updating θt, coupled with the certainty-
equivalent rule φT

tθt = 0, achieves output regulation, i.e.,

lim
t→∞

yt = 0 and sup
t≥0
|ut| <∞.

Proof. The updates {θt} satisfy the relations

∇`t(θt) = −2(yt+1 − φT

tθt)φt = −2yt+1φt. (13)

For each t, define Vt , Vt(θ∗, θt) ≡ Dω(θ∗, θt). Using (13)
and Lemma 2, we get the following Lyapunov recursion:

Vt+1 ≤ Vt + 2a
(

a‖φt‖2∗
α(c+ ‖φt‖2∗)

− 1
)

y2
t+1

c+ ‖φt‖2∗
,

where we used φT
tθ
∗ = yt+1 and φT

tθt = 0. Since c > 0 and
0 < a < α

2 , we have

a‖φt‖2∗
α(c+ ‖φt‖2∗)

<
1
2
⇒

y2
t+1

c+ ‖φt‖2∗
≤ Vt − Vt+1

a
,∀t.



Summing from t = 0 to t = T , we obtain
T∑
t=0

y2
t+1

c+ ‖φt‖2∗
≤ V0 − VT+1

a
≤ V0

a
,

which implies that

lim
T→∞

T∑
t=0

y2
t+1

c+ ‖φt‖2∗
≤ V0

a
<∞⇒ lim

T→∞

y2
t+1

c+ ‖φt‖2∗
= 0.

Since the system is minimum phase, there exist constants
K1,K2 ≥ 0 that depend on p and q, such that

‖φt‖∗ ≤ K1 +K2 max
0≤τ≤t

|yτ |, ∀t ≥ 0

(cf. [1], [12]). Hence, we can apply the Key Technical
Lemma of Goodwin and Sin [1, Lm. 6.2.1] to conclude that
yt → 0 and that ut remain bounded.

Theorem 2. Consider the stochastic model yt+1 = φT
tθ
∗ +

wt+1 with i.i.d zero-mean noise, Ew2
t = σ2. Choose a norm

‖ · ‖ on Rn, a constant α > 0, and a (α, ‖ · ‖) distance-
generating function ω on Θ. For each t = 0, 1, 2, . . . let ηt ,

α
α+

Pt
τ=0 ‖φτ‖2∗

. Then the MD update for θt, coupled with the
certainty-equivalent rule φT

tθt = 0, is self-optimizing:

lim
T→∞

1
T

T∑
t=1

y2
t = σ2 a.s.

Proof. The proof follows Goodwin et al. [13] (cf. also [12,
Sec. 13.4]), except we use the Lyapunov function induced
by ω. From Lemma 2, convexity of `t, and (13),

ηt(`t(θt)− `t(θ∗)) ≤ Vt(θ∗)− Vt+1(θ∗) +
η2
t y

2
t+1‖φt‖2∗

2α
.

Denote the conditional expectation Et[A] , E[A|wt−1
1 ].

Since Et+1[yt+1] = φT
tθ
∗ and φT

tθt = 0, it is easy
to verify that Et+1y

2
t+1 = (Et+1yt+1)2 + σ2 and

Et+1 [`t(θt)− `t(θ∗)] = (Et+1yt+1)2, yielding

ηt(Et+1yt+1)2 ≤ Vt(θ∗)− Et+1Vt+1(θ∗)

+
η2
t ((Et+1yt+1)2 + σ2)‖φt‖2∗

2α
.

Rearranging and using the fact that ηt ≤ α‖φt‖−2
∗ ,

1
2
ηt(Et+1yt+1)2 ≤ Vt(θ∗)− Et+1Vt+1(θ∗) +

η2
t σ

2‖φt‖2∗
2α

.

It is easy to show that
T∑
t=0

η2
t ‖φt‖2∗ =

T∑
t=0

α2‖φt‖2∗
(α+

∑t
s=0 ‖φs‖2∗)2

≤ α.

The Robbins–Siegmund supermartingale convergence theo-
rem [14, Thm. 1.3.12] implies that

∑∞
t=1 ηt(Et+1yt+1)2 <

∞ a.s. The rest of the proof follows exactly as in [12].

Remark 1. With the choice ω(·) = 1
2‖ · ‖

2
2, we recover the

one-step-ahead adaptive controller based on the projection
algorithm in the deterministic case (cf. [1, Sec. 6.3.1]) and
the gradient approach of [13] in the stochastic case. However,
we can choose other distance-generating functions depending

on the geometry of Θ. In particular, judicious choice of
ω can vastly improve the dimension dependence of MD
convergence rates [5]. This degree of freedom deserves a
closer look in the context of robust control, where one
may have structured uncertainty sets Θ (e.g., polyhedra or
simplices). Put another way, by choosing ω we also choose
the Lyapunov function V (·) ≡ Dω(θ∗, ·). In view of this, it
would be of interest to connect the continuous-time version
of MD, Eq. (10), to adaptive control. This would lead to an
intriguing generalization of the ODE method of Ljung [15].

Remark 2. For a reader familiar with the online learning
literature, the following interpretation of the results of this
section might be useful. As we have mentioned earlier, the
control problem can be cast as sequential minimization of
time-varying cost functions. If there is a θ∗ with zero loss,
we expect to have constant regret (see, e.g., Theorem 11.2 in
[16]). Theorem 1 then follows immediately since individual
costs on each round must decay to zero. When there is noise
in the system, the cumulative loss of the best comparator θ∗

is non-zero. However, generic Hannan-consistent strategies
yielding o(T ) regret are not strong enough to recover the
results of Theorem 2, and the specific structure of the loss
function becomes essential. It is also interesting to note that
in the stochastic case the stepsize ηt is kept small, on the
order of O(1/t), similar to the case of regret minimization
over strongly convex functions [17].

IV. SUPERVISORY CONTROL

We now consider the supervisory control framework of
Example 2, where we also assume the following:

• Exact matching with output disturbances: the un-
known system Σ is of the form

Σ : xt+1 = (A+BCθ∗)xt +Dut +Rwt

yt = Cθ∗xt

for some θ∗ ∈ Θ, where {wt} is a bounded disturbance
signal (we do not require that this bound be known,
only that it exists). The matrix R is assumed to be such
that the mapping from wt to yt is stable. Hence, we
can model the effect of the disturbance as a bounded
additive sequence ŵt in the output of Σ [3].

• Stability margin: there exists λ0 ∈ (0, 1), such that

sup
θ∈Θ
‖Aθχ(θ)‖ < λ0. (14)

• Smooth parametrization: the mappings θ 7→ Aθ and
θ 7→ Cθ are continuous.

• Convexity: the square of the output prediction error
et(θ) = yθt − yt is convex in θ for all t (with {ut}
and {yt} fixed).

We will consider estimation strategies of the following type.
We choose a distance-generating function ω : Θ → R
satisfying the bounds 0 < µ1 ≤ ω(θ) ≤ µ2 < ∞ for all
θ ∈ Θ, a monotone decreasing sequence {ηt} with η0 = 1,



and a constant λ ∈ (λ0, 1), and define

Jt(θ) ,
t∑

τ=0

λt−τ |eτ (θ)|2 + ηtω(θ). (15)

Our parameter estimators will be of the form

θt = πt(yt, ut−1) , arg min
θ∈Θ

Jt(θ).

Note that the problem of solving for {θt} is an instance
of OCP with an additive structure. In particular, defining
αt = λ−tηt, we can rewrite (15) as a regularized objective

Jt(θ) =
1
αt

t∑
τ=0

`τ (θ) + ω(θ),

where, for each τ , `τ (θ) , λ−τ |eτ (θ)|2 is a convex function
of θ. We also fix a hysteresis constant h > 0 and consider
the hierarchical hysteresis switching rule

δt(yt, ut−1) ,

1, if (1 + h)Jt(θt) ≤ min
θ∈Θγt−1

Jt(θ)

0, otherwise

For each t, also define

θ̂t ,

{
θt, if βt = δt(yt, ut−1) = 1
θ̂t−1, otherwise

to be the model index that actually determines the controller
choice at time t, since γt = χ(θ̂t). The evolution of the
switched system can be described by the state-space model

xt+1 = Ãbθtxt − Lγtet(θ̂t) (16a)

yt =
(
Cθ∗ 0

)
xt − et(θ∗) (16b)

ut =
(
0 Hγt

)
xt + Sγtyt (16c)

where xt ,

(
vt
zt

)
, Ãθ , Aθχ(θ), and Lγt ,

(
B +DSγt

Gγt

)
.

Before presenting the proof of stability, we list several
useful facts (cf. [18, Sec. 5.7], for example): For each θ ∈ Θ,
let Pθ denote the solution of the Lyapunov equation

(λ−1
0 Ãθ)TP (λ−1

0 Ãθ)− P = −I.

Owing to the stability margin condition (14), Pθ is positive
definite. Let K̄ , supθ∈Θ cond(Pθ), where cond(·) denotes
the condition number with respect to the 2-norm. Owing to
the smoothness condition and to the fact that each Θγ is
compact, we conclude that, for every γ ∈ Γ, θ 7→ Ãθ is
continuous on Θγ , hence θ 7→ Pθ and θ 7→ cond(Pθ) are
also continuous on Θγ [19]. Hence supθ∈Θγ cond(Pθ) exists
and is finite for each γ, and therefore so is K̄. For every
θ ∈ Θ, the autonomous system xt+1 = Ãθxt is uniformly
exponentially stable, i.e.,

‖xt‖ ≤ ρλt−t00 ‖xt0‖, ∀t ≥ t0 ≥ 0 (17)

where ρ =
√
K̄. Now we can state and prove our main result:

Theorem 3. Suppose that the regularization parameters {ηt}
are chosen so that the sequence αt = ηtλ

−t is monotone
nondecreasing. Then one can choose h and λ in such a

way that all the signals in the supervisory control system
remain bounded for every set of initial conditions. Moreover,
y2
t = O(λt + ηt) +O(1), where the O(1) term converges to

zero whenever wt → 0. In particular, if there are no output
disturbances, then choosing ηt = λt for all t we will get
y2
t = O(λt), i.e., exponential stability.

Proof. Given t > 0, let N(t) denote the number of switch-
ings over 0 < τ < t, i.e., N(t) = |{0 < τ < t : βτ = 1}|.
Let J̄t(θ) , λ−tJt(θ). From (15) we see that (1) J̄0(θ) ≥
ω(θ) ≥ µ1 > 0 and (2) J̄t+1(θ) ≥ J̄t(θ),∀t ≥ 0. The
Hierarchical Hysteresis Switching Lemma [2] then gives

N(t) ≤ 1 +m+
m

log(1 + h)
log

J̄t(θ)
J̄0(θ0)

, ∀θ ∈ Θ (18)

where m = |Γ|. Exact matching with bounded output
disturbance implies that

t∑
τ=0

λ−τ |eτ (θ∗)|2 ≤M1 +M2λ
−t, ∀t

for some 0 < M1,M2 < ∞, where M2 converges to zero
whenever the bound on the disturbance signal does. This
implies that J̄t(θ∗) ≤M1 + (M2 + µ2ηt)λ−t. Using this in
(18) with θ = θ∗, we obtain

N(t) ≤ 1 +m+
m

log(1 + h)
log

M1 + (M2 + µ2ηt)λ−t

µ1

≤ N0 +
t

τAD
(19)

with N0 = 1 + m + m
log(1+h) log M1+M2+µ2

µ1
and τAD =

log(1+h)
m log(1/λ) . In the terminology of Hespanha and Morse [20],
Eq. (19) states that the switching policy δ defined above has
chatter bound N0 and average dwell time τAD.

Now let 0 < t1 < t2 < . . . < tN(t) < t be the switching
times between 0 and t. Consider the autonomous system
xt+1 = Ãbθtxt. During each interval ti ≤ τ < ti+1, this
system is time-invariant and uniformly exponentially stable.
Applying (17) repeatedly, we obtain the bound

‖xt‖ ≤ ρN(t)+1λt0‖x0‖ ≤ ρN0+1+t/τADλt0‖x0‖.

By choosing h and λ appropriately, we can guarantee that
ρ1/τADλ0 ≤ λ. Assuming this holds, we get ‖xt‖ ≤ ρ̄λt‖x0‖
with ρ̄ ≡ ρN0+1. Now consider the switched system (16).
Defining L̄ , maxγ ‖Lγ‖, we have

‖xt‖ ≤ ρ̄λt‖x0‖+ L̄ρ̄

t∑
τ=0

λt−τ |eτ (θ̂τ )|.

Applying Cauchy–Schwarz, we get

‖xt‖ ≤ ρ̄λt‖x0‖+
L̄ρ̄λt/2√

1− λ

√√√√ t∑
τ=0

λ−τ |eτ (θ̂τ )|2



Using the monotonicity of {αt} and the positivity of ω,

t∑
τ=0

λ−τ |eτ (θ̂τ )|2 =
N(t)∑
k=0

(
J̄tk+1(θ̂tk)− J̄tk(θ̂tk)

)

−
N(t)∑
k=0

(αtk+1 − αtk)ω(θ̂tk)

≤
N(t)∑
k=0

(
J̄tk+1(θ̂tk)− J̄tk(θ̂tk)

)
.

We can now apply the Hierarchical Hysteresis Switching
Lemma again to bound the above sum by m(1+h)J̄t(θ∗) ≤
m(1 + h)(M1 + (M2 + µ2ηt)λ−t). Hence,

‖xt‖ ≤ ρ̄λt‖x0‖+
L̄ρ̄
√
m(1 + h)(M1λt +M2 + µ2ηt)√

1− λ
,

which means that ‖xt‖2 = O (λt + ηt +M2). If there are
no output disturbances, we will have M2 = 0 and ‖xt‖2 =
O(λt+ηt), i.e., xt → 0. Moreover, |et(θ∗)|2 ≤M1λ

t+M2,
which together with detectability of Σ = Σθ∗ in turn implies
that y2

t = O(λt + ηt + M2). The control sequence {ut}
remains bounded, again by detectability.

Remark 3. From the above proof it is evident that the role of
the decaying regularization parameter ηt is to guarantee that
output regulation is achieved when there are no disturbances.
Setting ηt ≡ 1 for all t will not achieve this effect.

V. CONCLUSION

Our goal in this paper was to highlight the role of
online convex programming (OCP) in adaptive control. We
have shown that the well-known Mirror Descent scheme of
Nemirovski and Yudin can be viewed as a generalization of
gradient-based parameter tuning in classical adaptive control.
The main import of MD in that setting is the degree of
freedom the control designer has in choosing the underly-
ing Lyapunov function (by varying the distance-generating
function appropriately). In addition, we have highlighted the
importance of regularization in switching control: adding
a slowly decaying regularization term to the cumulative
sum of output prediction errors ensures that the output
and the control signals remain bounded in the presence of
bounded disturbances, yet output regulation is achieved when
disturbances are absent. This is an improvement over the
hysteresis-based scheme of [2], which uses a small positive
constant instead of a decaying regularizer. As part of future
work, we will investigate adaptive control schemes that
combine parameter tuning with controller switching [21].

Over the past decade, OCP has been extensively used in
the online learning literature to model sequential decision-
making in an uncertain dynamic environment. This led to
a number of new insights into fairly advanced concepts
from convex optimization, including not only MD, but also
self-concordance and interior point methods [22]. Moreover,
some connections to control have emerged as well. For
instance, recent work by De Farias and Megiddo [23] ad-
dresses the problem of combining expert advice in a reactive

environment, which can be thought of as OCP over the
unit simplex where the extreme points correspond to the
different strategies. That work highlights the importance of
“dwelling” on a single strategy for a number of rounds,
which is quite reminiscent of a similar idea in supervisory
control (cf. [2] and references therein). Further exploration
of these concepts will be extremely beneficial in control,
learning, and optimization.
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