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Nevroz Şen, Fady Alajaji and Serdar Yüksel
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Abstract—In this paper we consider the feedback capacity of
a class of symmetric finite-state Markov channels. For this type
of channels, symmetry is a generalized version of the symmetry
defined for discrete memoryless channels. We show that feedback
does not increase capacity for such class of finite-state channels.
We indeed demonstrate that for such channels, both non-feedback
and feedback capacities are achieved by a uniform i.i.d. input
distribution.

I. INTRODUCTION AND LITERATURE REVIEW

Although feedback does not increase the capacity of discrete
memoryless channels (DMCs) [1], it generally increases the
capacity of channels with memory and the feedback capacity
for a wide class of channels still encapsulates many open prob-
lems. Among them, we herein study finite-state Markov (FSM)
channels. This work is mainly motivated by the results on
the feedback capacity of channels which exhibit some notion
of symmetry. Alajaji in [2], showed that feedback does not
increase the capacity of discrete channels with modulo additive
noise. It was also shown that for any channel satisfying the
symmetry conditions defined in [3], feedback does not increase
its capacity.

A definition of symmetric finite-state Markov channels
is given in [4] and [5] and capacity without feedback is
calculated. It is shown that the capacity-achieving distribution
is uniform and that this distribution yields a uniform output.
Recently, it has been shown that feedback does not increase
the capacity of the compound Gilbert-Elliot channel [6],
which is a family of FSM channels, where the capacity is
achieved by applying a uniform input. In a closely related
work, Jelinek investigated the capacity of finite-state inde-
composable channels with side information at the transmitter
[7]. In particular, he showed that the capacity of finite-state
Markovian indecomposable channels with (modulo) additive
noise, where the noise is a deterministic function of the state,
is not increased with the availability of side information at
the transmitter. In a more recent work, it has been shown that
it is possible to formulate feedback capacity as a dynamic
programming problem and therefore an approximate solution
can be found by using the value iteration algorithm [8]. In
[9], finite-state channels with feedback, where feedback is a
time-invariant deterministic function of the output samples,
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is considered. It was shown that if the state of the channel
is known both at the encoder and the decoder then feedback
does not increase capacity. In addition to these results, it has
also been shown that feedback does not increase the capacity
for the binary erasure channel [10] and a discrete binary-input
non-binary output channel [11] used to model soft-decision
demodulated discrete fading channels with memory [12].

From control theory point of view, Walrand and Varaiya
[13] presented an important insight in the use of feedback in a
real time casual coding context. In particular, they showed that
feedback is useful in general casual coding problems, however,
it is not useful if the channel is symmetric as defined in their
paper and memoryless.

These results prompt one to look for the most general case
of symmetry under which feedback does not increase capacity.
With this motivation, we study the feedback capacity of a class
of (point-to-point) symmetric FSM channels and prove that
feedback does not increase their capacity.

In the rest of this paper, we first give the definition of
”quasi-symmetric” FSM channels. This will be followed by a
section on their capacity with feedback. Then, we discuss some
channels that satisfy all the conditions presented in the paper
and hence their capacity does not increase with feedback.
Following this, we present two types of channels which do
not fully satisfy the conditions presented in the paper yet the
presented approach in the paper is still applicable. We end the
paper with concluding remarks.

Throughout the paper, we will be using the following
notations. A random variable will be denoted by an upper
case letter X and its particular realization by a lower case
letter x. The sequence of random variables Xi, Xi+1, ..., Xn

will be denoted by Xi
n and so its realization will be xin. We

will represent a Markov source by a pair [S, P ], where S is
the state set and P is the state transition probability matrix.
We will also be assuming that the Markov processes in the
paper are stationary and irreducible.

II. QUASI-SYMMETRIC FINITE STATE MARKOV CHANNEL

A finite-state Markov channel (FSMC) [4] is defined by a
pentad [X ,Y,S, PS , C], where X is the input alphabet, Y is the
output alphabet and the Markov process {Sn}∞n=1, Sn ∈ S is
represented by the pair [S, PS ] where S is the state set and PS
is the state transition probability matrix. We assume that the
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sets X , Y and S are all finite. C defines a transition probability
distribution, pC(y|x, s), over Y for each x ∈ X , s ∈ S. We
also assume that the FSM channel satisfies the following three
properties when there is no feedback:

I1 States and inputs are independent of each other:

P (sn|xn) = P (sn) ∀n ≥ 1. (1)

I2 State is Markovian,

P (sn|sn−1, yn−1, xn−1) = P (sn|sn−1) ∀n ≥ 1. (2)

I3 For any integer n ≥ 1,

P (yn|sn, xn) =
n∏
i=1

pC(yi|si, xi) (3)

where pC(.|., .) is defined by C. It should be noted that, the
property I3 exhibits a memoryless property for the channel if
the state is known. Property I2 and I3 imply that:

P (yn|sn, xn, sn−1, xn−1, yn−1) = pC(yn|sn, xn). (4)

In this paper, we are interested in a subclass of FSM
channels where the channel transition matrices, Qs =
[pC(y|s, x)]xy, s ∈ S , carry some notion of symmetry which
is similar to the symmetry defined for DMCs.

Definition 1: A DMC with input alphabet X , output al-
phabet Y and channel transition matrix Q = [p(y|x)] is
quasi-symmetric if Q can be partitioned along its columns
into weakly-symmetric sub-arrays, Q1, Q2, . . . , Qm, with each
Qi having size |X | × |Yi| where Y1 ∪ · · · ∪ Yn = Y and
Yi ∩ Yj = ∅ ∀i 6= j [14]. A weakly-symmetric sub-array is a
matrix whose rows are permutations of each other and whose
column sums are all identically equal to a constant.
It should be noted that for a quasi-symmetric DMC the rows
of its entire transition matrix, Q, are also permutations of each
other. A simple example of a quasi symmetric DMC can be
given by the following transition matrix

Q =
(
a b c d
d c b a

)
which can be partitioned along its columns into two sub-arrays

Q1 =
(
a d
d a

)
and Q2 =

(
b c
c b

)
.

We can now give various definitions of symmetry for FSM
channels.

Definition 2: An FSM channel is symmetric if for each state,
s ∈ S , the rows of Qs are permutations of each other such
that the row permutation pattern is identical for all states, and
similarly, if for each s ∈ S the columns of Qs are permutations
of each other with an identical column permutation pattern
across all states.

Definition 3: An FSM channel is weakly-symmetric if for
each state, s ∈ S, Qs is weakly-symmetric and the row
permutation pattern is identical for all states.

Definition 4: An FSM channel is quasi-symmetric if for
each state, s ∈ S, Qs is quasi-symmetric and the row
permutation pattern is identical for all states.

To make these definitions clear, let us consider the follow-
ing conditional probability matrices of a two-state quasi-
symmetric FSM channel:

Q1 =
(
a b c d
d c b a

)
, Q2 =

(
a′ b′ c′ d′

d′ c′ b′ a′

)
. (5)

As it can be seen, Q1 and Q2 have the same permutation
orders. It directly follows that, symmetric and weakly sym-
metric FSM channels are special cases of quasi-symmetric
FSM channels. Therefore, we focus on quasi-symmetric FSM
channels for the sake of generality.

A question may appear regarding the partition of the channel
transition matrix for a case in which there exists more than
one partition. It should be noted that the unique permutation
order between the states can generate a common partition on
each of the the quasi-symmetric channel transition probability
matrices Qs, s ∈ S.

Let us define Z (which will serve as a noise alphabet) such
that |Y| = |Z|, where Y is the output alphabet. Then, the
symmetry definitions above imply that for each state s, we can
find functions fs(.) : Z → [0, 1] and Φs(., .) : X × Y → Z ,
such that

fs(Φs(x, y)) = pC(y|x, s). (6)

Lemma 1: The function Φs(., .) is invariant with s.
Proof: Φs(., .) is a function which takes the row and

column position of a matrix as the input and outputs a
noise value. We need to show that Φsi

(x, y) = Φsj
(x, y)

∀i, j ∈ {1, 2, · · · , |S|} and ∀x ∈ X , y ∈ Y . Rows of a quasi-
symmetric channel transition matrix are permutations of each
other. Therefore,

Φsi
(x1, yi1) = Φsi

(x2, yi2) = · · · = Φsi
(x|X |, yik) = z∗,

where k = |X |. By the unique order of row permutation
between states, we have that

Φsj
(x1, yi1) = Φsj

(x2, yi2) = · · · = Φsj
(x|X |, yik) = z∗

which implies that Φsj = Φsi

Therefore, for a quasi-symmetric FSM channel, there exists a
function Φ(., .) such that the random variable Z = Φ(X,Y )
has the conditional distribution

p(z|x, s) = fs(z). (7)

This important observation given in [4], reduces the set of
conditional probabilities which identifies the quasi-symmetric
FSM channel to an |S| × |Z| matrix T defined by

T [s, z] = fs(z). (8)

Therefore, for quasi-symmetric FSM channels besides prop-
erties [I1] to [I3], we have an additional property defined as
follows:

I4 For a symmetric Markov channel, for any n,
P (zn|xn, sn) = P (zn|sn) = T [sn, zn].

To make this statement clear, let us consider the FSM
channel given above with X = {1, 2}, Y = Z = {1, 2, 3, 4}
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and S = {1, 2}. For this channel, we can define the function
z = Φ(x, y) and fs(z) such that for each (x, y) pair, which
has the same conditional probability within that state, Φ(x, y)
returns the same value and the value of fs(z) at that value
is the pC(yi|xi, si) value, e.g., Φ(1, 1) = Φ(2, 4) = 1 and
f1(1) = a and f2(1) = a′. Therefore, the channel conditional
probabilities for each state can now be defined by Φ and the
matrix T , where

T =
(

a b c d
a′ b′ c′ d′

)
.

Hence, the fundamental property for quasi- symmetric FSM
channels is the existence of a noise process given by Zn =
Φ(Xn, Yn) such that Zn is independent of Xn [4]. The class of
FSM channels having this property are termed variable noise
channels [5].

Assumption 1: We finally assume that
∑
x fs(Φs(x, y)) is

invariant with s ∈ S.
This requirement will be needed in our dynamic programming
approach which we use to determine the optimal feedback
policy (as will be seen in the next section).

III. FEEDBACK CAPACITY OF QUASI-SYMMETRIC FSM
CHANNELS

In this section, we will show that feedback does not increase
the capacity of quasi-symmetric FSM channels defined in the
previous section. By feedback, we mean that there exists a
channel from the receiver to the transmitter which is noiseless,
delayless and has large capacity. Thus at any given time, all
previously received outputs are unambiguously known by the
transmitter and can be used for encoding the message into the
next code symbol.

A feedback code with blocklength n and rate R consists of
a sequence of mappings

ψi : {1, 2, ..., 2nR} × Yi−1 → X

for i = 1, 2, ...n and an associated decoding function

φ : Yn → {1, 2, ..., 2nR}.

Thus, when the transmitter wants to send a message, say
W ∈ {1, 2, ..., 2nR}, it sends the codeword Xn, where X1 =
ψ1(W ) and Xi = ψi(W,Y1, · · · , Yi−1), for i = 2, · · · , n.
For a received Y n at the channel output, the receiver uses
the decoding function to estimate the transmitted message as
Ŵ = φ(Y n). A decoding error is made when Ŵ 6= W .
We assume that the message W is uniformly distributed over
{1, 2, ..., 2nR}. Therefore, the probability of error is given by

P (n)
e =

1
2nR

2nR∑
k=1

P {φ(Y n) 6= W |W = k} .

The capacity with feedback, CFB , is the supremum of all
admissible rates; i.e., rates for which there exists sequences of
feedback codes with asymptotically vanishing probability of
error. From Fano’s inequality, we have

H(W |Yn) ≤ hb(Pe(n)) + Pe
(n) log2(2nR − 1)

≤ 1 + Pe
(n)nR

where the first inequality holds since hb(P
(n)
e ) ≤ 1, where

hb(·) is the binary entropy function. Since W is uniformly
distributed,

nR = H(W ) = H(W |Y n) + I(W ;Y n)
≤ 1 + Pe

(n)nR+ I(W ;Y n)

where R is any admissible rate. Dividing both sides by n and
taking the lim inf yields

CFB ≤ lim inf
n→∞

sup
1
n
I(W ;Y n)

where the supremum is taken over all feedback encod-
ing schemes {ψi}ni=1 . Note that, sup{ψi}n

i=1

1
nI(W ;Y n) =

sup 1
nI(W ;Y n) where the right-hand side supremum is taken

over feedback policies
{
P (xi|xi−1, yi−1)

}n
i=1

. We can write
I(W ;Y n) as follows

I(W ;Y n) =
n∑
i=1

I(W ;Yi|Y i−1)

=
n∑
i=1

(
H(Yi|Y i−1)−H(Yi|W,Y i−1)

)
. (9)

We next follow two steps in order to prove the contribu-
tion of the paper. In the first step, we show that the term
H(Yi|W,Y i−1) is equal to H(Zi|Zi−1) and in the second
step we will show that

∑n
i=1H(Yi|Y i−1) is maximized by

uniform feedback policies. We show the second step using a
dynamic programming approach. Let us now start with the
first step.

Lemma 2: A quasi-symmetric FSM satisfies

H(Yi|W,Y i−1) = H(Zi|Zi−1), ∀i = 1, · · · , n.

Proof of the lemma is given in Appendix A. As the next
step, we show that all of the output conditional entropies
H(Y i|Y i−1) in (9) are maximized by uniform i.i.d feedback
policies. We solve this problem using a dynamic programming
technique.

A. Entropy Optimization and Dynamic Programming

We now recast the optimization problem, maximization of
the sum of conditional output entropies over all feedback
policies, using a dynamic programming perspective [15]. Let
us denote the feedback policies by

P (xi|xi−1, yi−1) = ϕi, for i = 1, . . . , n

and let π = {ϕi, 1 ≤ i ≤ n}. Let us recall our optimization
problem:

max
{ϕ1,··· ,ϕn}

{H(Yn|Y n−1) +H(Yn−1|Y n−2) + · · ·+H(Y1)}. (10)

From (10), we observe that the optimization problem is nested.
More explicitly, the policy at time n, i.e., ϕn, knows the
previous policies and should maximize H(Yn|Y n−1) and on
the other hand, ϕi knows previous policies but it should
maximize H(Yi|Y i−1)+H(Yi+1|Y i)+· · ·+H(Yn|Y n−1). Let
us denote Vi(Y i−1) = maxϕi [H(Yi|Y i−1)+Vi+1(Y i)] where
Vi(Y i−1) terms are explicitly given in (11) for i = 1, · · · , n.
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Vn(Y n−1) = max
ϕn

H(Yn|Y n−1)

Vn−1(Y n−2) = max
ϕn−1

{
H(Yn−1|Y n−2) + max

ϕn

{
H(Yn|Y n−1)

}}
...

V1 = max
ϕ1

{
H(Y1) + max

ϕ2

{
H(Y2|Y1) + · · ·+ max

ϕn−1

{
H(Yn−1|Y n−2) + max

ϕn

{
H(Yn|Y n−1)

}}
· · ·
}}

.(11)

Vi+1(Y i) denotes the reward-to-go which is the future
reward generated by the control policy at the current time.
Therefore, the optimization problem turns out to be finding
the policy, π, which achieves V1. As the next step, we show
that the policy achieving V1 is composed of the uniform
feedback policies for i = 1, · · · , n. Along this way, we need
the condition that the policies at times (i − 1), · · · , 1 should
not affect the value attained by the conditional output entropy
at time i when the policy at time i is uniform.

A sufficient condition to manage this problem is that∑
x fs(Φs(x, y)) being invariant with s ∈ S . This will be

explicitly shown by a lemma in the succeeding sections.
Lemma 3: For a quasi-symmetric FSM channel, each con-

ditional output entropy H(Yi|Y i−1), i = 1, · · · , n in (9) is
maximized by a uniform i.i.d feedback policy:

argmax
ϕi

H(Yi|Y i−1) = ϕ?(x) =
1
|X |

, ∀x ∈ X

∀i = 1, · · · , n. (12)

A detailed proof of above lemma can be found in Ap-
pendix B. With this lemma, we have shown that for each
i, H(Yi|Y i−1) is maximized by the uniform input policy.
However, this is not sufficient to conclude that the opti-
mal policy attaining V1, i.e., the optimal policy maximizing∑n
i=1H(Yi|Y i−1), consists of uniform input policies. The

reason for this is that Lemma 3 only maximizes the current
conditional entropy with uniform input however, it is still
possible that a non-uniform policy might result in a higher
value function through the rewards-to-go.

Let us now look at the P (Yi|Y i−1) when we apply a
uniform policy at time i (current time). With the uniform
policy, we obtain

P (Yi|Y i−1) =
∑

xi,xi−1

∑
si,si−1

P (yi|xi, si)P (xi|xi−1, yi−1)

P (si|si−1)P (xi−1, si−1|yi−1)
(i)
=

1
|X |

∑
xi,xi−1

∑
si,si−1

P (yi|xi, si)P (si|si−1)P (xi−1, si−1|yi−1)

=
1
|X |

∑
xi

∑
si

P (yi|xi, si)P (si|si−1)
∑
xi−1

P (xi−1, si−1|yi−1)

=
1
|X |

∑
xi

∑
si

∑
si−1

P (yi|xi, si)P (si|si−1)P (si−1|yi−1)

=
1
|X |

∑
xi

∑
si

P (yi|xi, si)P (si|yi−1)

where (i) is valid since the input policy is uniform. Note
that the dependency on past input policies comes through
P (si|yi−1) which includes transition probabilities between
states, on which we have no control.

Lemma 4: The value of conditional entropy H(Yi|Y i−1),
at time i, is independent of past feedback policies at times
(i−1), · · · , 1 iff

∑
x fs(Φs(x, y)) is invariant with s ∈ S and

feedback policies are uniform i.i.d.
Proof:

P (Yi|Y i−1) =
1
|X |

∑
xi

∑
si

P (yi|xi, si)P (si|yi−1)

=
1
|X |

∑
si

P (si|yi−1)
∑
xi

P (yi|xi, si)

=
1
|X |

∑
si

P (si|yi−1)
∑
xi

fs(Φ(xi, yi))︸ ︷︷ ︸
and since the underbraced term is invariant with s
then the proof is complete as the final sum will be

1
|X |
∑
xi
fs(Φ(xi, yi)).

Till now, we have shown that H(Yi|W,Y i−1) =
H(Zi|Zi−1) and

∑n
i=1H(Yi|Y i−1) is maximized by uniform

input polices. With these results in hand, we have been able
to show the following converse for the feedback capacity

CFB ≤ lim inf
n→∞

1
n

[H(Ỹ n)−H(Zn)] (13)

where H(Y n) is the output entropy when the input is uniform.
Lemma 5: For a quasi-symmetric FSM channel,

[X ,Y,S, PS , Z, T,Φ], with feedback, the noise process
is a hidden Markov process with parameters [S, P, Z, T ].
The proof can be found in [4, Lemma 1]. It should be
noted that this proof is valid if the input process is i.i.d.
Therefore, this proof seems to be inapplicable when feedback
exists. However, for quasi-symmetric FSM channels, the ca-
pacity achieving distribution is uniform therefore the statement
holds with feedback as well. Additionally, the output process,
{Ỹn}∞n=1, for uniform Xn is also a hidden Markov process.
Therefore, since the state process is stationary and ergodic both
the output and noise processes are stationary and ergodic.

Theorem 1: The feedback capacity of the quasi-symmetric
FSM channel [X ,Y,S, PS , Z, T,Φ] satisfying the condition
that

∑
x fs(Φs(x, y)) is invariant with s ∈ S is

CFB = H(Ỹ )−H(Z)
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where H(Ỹ ) is the entropy rate of the output process for
uniform i.i.d. Xn and H(Z) is the entropy rate of the hidden
Markov process.

Proof: With (13) we already have a converse for the feed-
back capacity. We need to show that this bound is achievable.
We first note that by Lemma 5, the noise and output processes
are stationary which implies that

CFB ≤ lim inf
n→∞

sup
{ϕ1,··· ,ϕn}

1
n
I(W ;Y n)

= lim inf
n→∞

1
n

[H(Ỹ n)−H(Zn)]

= lim
n→∞

1
n

[H(Ỹ n)−H(Zn)] = H(Ỹ )−H(Z).(14)

It is sufficient to show that the bound in (14) is achievable. We
now remark that there exists a coding policy which achieves
this bound. Towards this end, we note that by adopting a policy
which does not use feedback, it can be shown that H(Ỹ ) −
H(Z) is an admissible rate since the noise process is stationary
and ergodic (e.g. see [8, Theorem 5.3]). Thus,

CFB ≥ lim
n→∞

1
n

[H(Ỹ n)−H(Zn)] = H(Ỹ )−H(Z)

and this completes the proof.
Corollary 1: Feedback does not increase capacity of quasi-

symmetric FSM channels satisfying
∑
x fs(Φs(x, y)) being

invariant with s ∈ S.
The result follows by noting that a non-feedback code is

a special case of a feedback code and that the non-feedback
capacity is also achieved by uniform input policies.

IV. EXAMPLES OF QUASI-SYMMETRIC FINITE STATE
MARKOV CHANNELS

In this section, we present some well-known channels that
satisfy the quasi-symmetry condition presented in the paper.

Gilbert-Elliot Channel One of the widely used FSM chan-
nel is the Gilbert-Elliot channel denoted by [X ,Y,S,P, C],
where X = Y = S = {0, 1}. The two states are called ”bad”
and ”good” and the state transition matrix is given by:

P =
(

1− g g
b 1− b

)
where 0 < g < 1, 0 < b < 1 and in either of these two
states, the channel is a binary symmetric channel (BSC) with
the following transition matrixes for states s = 0 and s = 1,
respectively:(

1− pG pG
pG 1− pG

)
,

(
1− pB pB
pB 1− pB

)
.

From the above channel transition matrixes, it can be observed
that the Gilbert-Elliot channel is a symmetric FSM channel.
Namely, there exists a random variable Z = Φ(X,Y ) and a
function fs(z) such that, f0(0) = 1 − pG and f0(1) = pG
and f1(0) = 1− pB and f0(1) = pB .

Therefore, the Gilbert-Elliot channel is a symmetric FSM
channel with Z = {0, 1}, Φ(X,Y ) = X ⊕ Y , where ⊕
represents modulo addition, and T [s, z] defined above. By

Corollary 1, feedback does not increase the capacity of the
Gilbert-Elliot channel. It should be noted that this result is a
special case of [2] and [6].

Discrete Modulo Additive Channel with Markovian Noise
The second example that we consider is the discrete modulo
additive channel with Markovian noise. Consider a discrete
channel with a common alphabet A = {0, 1, . . . , q − 1} for
the input, output and noise processes. The channel is described
by the equation Yn = Xn ⊕ Zn, for n = 1, 2, 3, . . . , and
Yn, Xn and Zn denotes the output, input and noise processes
respectively. The noise process, {Zn}∞n=1, is Markovian and
it is independent from the input process. It is straightforward
to see that the channel transition matrix for this channel is
symmetric where each state is given by Zi−1. For simplicity,
let us assume that q = 3. Then, the channel transition matrix
at state i, Ci, will be as follows: P (Zi = 0|zi−1) P (Zi = 1|zi−1) P (Zi = 2|zi−1)

P (Zi = 2|zi−1) P (Zi = 0|zi−1) P (Zi = 1|zi−1)
P (Zi = 1|zi−1) P (Zi = 2|zi−1) P (Zi = 0|zi−1)

 .

At different states, the channel transition matrix will still be
symmetric with the same row permutation order. Therefore,
the discrete modulo additive channel is a symmetric FSM
channel with A = {0, 1, 2}, Φ(X,Y ) = X ⊕ Y and state is
Zi−1. Therefore, by Corollary 1, feedback does not increase
the capacity of the discrete modulo additive channel with
Markovian noise.

This result is first shown in [2].
We should note that both examples satisfy the condition

that the column sums of channel transition matrix is identical
across all states as in fact they are all equal to one.

V. TWO SPECIFIC QUASI-SYMMETRIC FSM CHANNELS

There are two classes of quasi-symmetric FSM channels
that need further attention. In this section, we briefly mention
how their channel properties involve the condition that the
previous feedback policies either do not affect the value of
the conditional output entropy at current time or the previous
input policy should also be uniform to maximize the current
conditional output entropy.

A. Non-Binary Noise Discrete Channel with Markovian Noise

The first example is a discrete binary-input 2q-ary output
communication channel (NBNDC), with memory introduced
in [12]. The NBNDC model is described by the following
equation

Yk = (2q − 1)Xk + (−1)XkZk (15)

for k = 1, 2, · · · , where Xk ∈ X = {0, 1} is the input,
Yk, Zk ∈ Z = Y = {0, 1, · · · , 2q − 1} is the output and the
noise processes respectively. The noise and input processes are
independent from each other. The channel is a quasi-symmetric
FSM channel with the following transition matrix, assuming
that q = 2, at state i(

ε0 ε1 ε2 ε3
ε3 ε2 ε1 ε0

)
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where εj = P (Zi = j|zi−1) and zi−1 is the state process.
Note that,

∑
x fs(Φs(x, y)) varies with s ∈ S . However, it

can be shown that
∑n
i=1H(Yi|Y i−1) is maximized if all the

past policies are uniform as well.

B. Binary Erasure Channel with Markovian State

The second example is the binary erasure channel. In [10],
this channel is considered as a finite buffer queue, which can
be viewed as an FSM channel where the state of the finite
buffer channel is determined by the state of the buffer. The
channel has binary input and ternary output: X = {0, 1},Y =
{0, 1, E}. Let Si denote the state of the channel when the
packet i arrives such that Si = 1 : packet is erased and
Si = 0 : packet gets through. Therefore, the channel transition
matrix at state i will be as follows

Ci =
(
ε 0 1− ε
0 ε 1− ε

)
.

where P (Si = 0|si−1) = ε. In [10], it was shown that
feedback does not increase capacity of this erasure channel
using a different technique. We however note that the approach
presented in the paper gives the same result. This can be ver-
ified as follows: first note that the channel is quasi-symmetric
for all states and therefore, H(Yi|Y i−1) is maximized by
uniform input policies ∀i = 1, · · · , n. What we further need to
show is that P (Si|yi−1) is independent of past input policies
(see Lemma 4). It should be noted that since

P (Si|yi−1) =
∑
si−1

P (Si|si−1)P (si−1|yi−1)

and for a given output the state is deterministic therefore
P (Si|yi−1) independent of past policies.

VI. CONCLUSION

In this work, we presented a class of symmetric channels
which encapsulates a variety of discrete channels with mem-
ory. Motivated by several results in the literature, we found a
class of symmetric finite-state Markovian channels for which
feedback does not increase capacity.

APPENDIX A
PROOF OF LEMMA 2

Proof: Let us define η(x) = x log(x).

n∑
i=1

H(Yi|W,Y i−1) =
n∑
i=1

H(Yi|W,Xi, X
i−1, Y i−1)

since Xi = ψi(W,Y1, · · · , Yi−1), for i = 2, · · · , n. Hence,

H(Yi|W,Xi, X
i−1, Y i−1)

= −EW,Xi,Y i−1

∑
yi

η(P (yi|w, xi, xi−1, yi−1)).

We also observe that∑
yi

η(P (yi|w, xi, xi−1, yi−1))

(a)
=

∑
yi

η(
∑
si

pC(yi|xi, si)P (si|w, xi, xi−1, yi−1))

(b)
=

∑
yi

η(
∑
si

pC(yi|xi, si)P (si|w, xi−1, yi−1))

(c)
=

∑
yi

η(
∑
si

pC(yi|xi, si)P (si|xi−1, yi−1, zi−1))

(d)
=

∑
zi

η(
∑
si

p(zi|si)P (si|xi−1, yi−1, zi−1)) (16)

where (a) is valid since given si and xi the distribution of yi
is independent of the rest, (b) is valid since xi is a function
of w and yi−1 and (c) is valid since

P (si|w, xi−1, yi−1) =
∑
si−1

P (si, si−1|w, xi−1, yi−1)

(á)
=

∑
si−1

P (si|si−1)P (si−1|w, xi−1, yi−1)

(b́)
=

∑
si−1

P (si|si−1)P (si−1|xi−1, yi−1)

(ć)
=

∑
si−1

P (si|si−1)P (si−1|xi−1, yi−1, zi−1)

= P (si|xi−1, yi−1, zi−1)

where (á) and (ć) is valid since state is Markovian and
Φ(xi−1, yi−1) = zi−1 and (b́) can be shown inductively as
follows:

P (s1|w, x1, y1) =
P (s1, w, x1, y1)∑
s1
P (s1, w, x1, y1)

=
P (y1|x1, s1)P (x1, s1, w)∑
s1
P (y1|x1, s1)P (x1, s1, w)

(i)
=

P (y1|x1, s1)P (s1)P (x1, w)∑
s1
P (y1|x1, s1)P (s1)P (x1, w)

=
P (y1|x1, s1)P (s1)∑
s1
P (y1|x1, s1)P (s1)

= P (s1|x1, y1) (17)

where (i) is valid since s1 is independent of the rest. Similarly,

P (s2|w, x2, y2) =
P (s2, w, x

2, y2)∑
s2
P (s2, w, x2, y2)

=
P (y2|x2, s2)P (x1, x2, y1, s2, w)∑
s2
P (y2|x2, s2)P (x1, x2, y1, s2, w)

(ii)
=

P (y2|x2, s2)P (x2|x1, y1, w)P (s2, x1, y1, w)∑
s2
P (y2|x2, s2)P (x2|x1, y1, w)P (s2, x1, y1, w)

=
P (y2|x2, s2)P (s2|x1, y1, w)P (x1, y1, w)∑
s2
P (y2|x2, s2)P (s2|x1, y1, w)P (x1, y1, w)

(iii)
=

P (y2|x2, s2)
∑
s1
P (s2|s1)P (s1|x1, y1)∑

s2
P (y2|x2, s2)

∑
s1
P (s2|s1)P (s1|x1, y1)

= P (s2|x2, y2)
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where (ii) is valid since x2 is a function of x1, y1 and
w and (iii) is due to (17). Using these steps recur-
sively verifies (b́). Finally, (d) follows from (7), (8) and
I4. We next show that P (si|xi−1, yi−1) = P (si|zi−1).
Note that, P (si|xi−1, yi−1) = P (si|xi−1, yi−1, zi−1) =∑
si−1 P (si|si−1)P (si−1|xi−1, yi−1, zi−1). Then,

P (s1|x1, y1) =
P (s1, x1, y1)∑
s1
P (s1, x1, y1)

=
P (y1|x1, s1)p(x1)p(s1)∑
s1
P (y1|x1, s1)p(x1)p(s1)

(e)
=

fs1(z1)p(x1)p(s1)∑
s1
fs1(z1)p(x1)p(s1)

(f)
=

p(z1|x1, s1)p(x1)p(s1)∑
s1
p(z1|x1, s1)p(x1)p(s1)

= p(s1|z1) (18)

where (e) is due to (7), (8) and (f) is due to I4. Similarly,

P (s2|x1, y1) =
∑
s1

P (s2|s1)P (s1|x1, y1)

(g)
=

∑
s1

P (s2|s1)P (s1|z1) = P (s2|z1) (19)

where (g) is due to (18). Now, let us consider P (s3|x2, y2) =∑
s2
P (s3|s2)P (s2|x2, y2). Then,

P (s2|x2, y2) = P (s2|x2, z2)

=
P (s2, x1, x2, z1, z2)∑
s2
P (s2, x1, x2, z1, z2)

(h)
=

P (z2|s2)P (x2|x1, z1)P (s2|x1, z1)P (x1)P (z1)∑
s2
P (z2|s2)P (x2|x1, z1)P (s2|x1, z1)P (x1)P (z1)

(k)
=

P (z2|s2)P (x2|x1, z1)P (s2|z1)∑
s2
P (z2|s2)P (x2|x1, z1)P (s2|z1)

(l)
=

P (z2|s2)P (x2|x1, z1)P (s2|z1)
P (x2|x1, z1)

∑
s2
P (z2|s2)P (s2|z1)

=
P (z2|s2)P (s2|z1)∑
s2
P (z2|s2)P (s2|z1)

= P (s2|z2) (20)

where (h) is valid by (7), (k) is valid by (19) and (l) is valid
since P (x2|x1, z1) is independent of s2. Using (18), (19) and
(20) recursively for i = 2, . . . , n we obtain

P (si|xi−1, yi−1, zi−1) = P (si|xi−1, yi−1) = P (si|zi−1). (21)

Substituting (21) into (16) gives us H(Zi|Zi−1).

APPENDIX B
PROOF OF LEMMA 3

Proof: Let us first write the conditional output entropy
H(Yi|Y i−1) as

H(Yi|Y i−1) =
∑
yi−1

P (yi−1)H(Yi|Y i−1 = yi−1) (22)

where

H(Yi|Y i−1 = yi−1) = −
∑
yi

P (yi|yi−1) logP (yi|yi−1). (23)

To show that H(Yi|Y i−1) in (22) is maximized by a uniform
input policy, it is enough to show that such a uniform policy
maximizes each of the H(Yi|Y i−1 = yi−1) terms.

We now expand P (yi|yi−1) as follows∑
xi

∑
xi−1

∑
si

∑
si−1

P (yi, xi, si, xi−1, si−1|yi−1)

=
∑

xi,xi−1

∑
si,si−1

P (yi|xi, si, xi−1, si−1, yi−1)

P (xi, si, xi−1, si−1|yi−1)
(i)
=

∑
xi,xi−1

∑
si,si−1

P (yi|xi, si)P (xi, si, xi−1, si−1|yi−1)

=
∑

xi,xi−1

∑
si,si−1

P (yi|xi, si)P (xi, xi−1, si−1|yi−1)

P (si|xi, xi−1, si−1, yi−1)
(ii)
=

∑
xi,xi−1

∑
si,si−1

P (yi|xi, si)P (si|si−1)

P (xi|xi−1, si−1, yi−1)P (xi−1, si−1|yi−1)
(iii)
=

∑
xi,xi−1

∑
si,si−1

P (yi|xi, si)P (xi|xi−1, yi−1)

P (si|si−1)P (xi−1, si−1|yi−1).

where (i) follows by (4), (ii) is valid due to the property
I2 and finally (iii) is due to the fact that the feedback input
depends only on (xi−1, yi−1). Thus

P (yi|yi−1) =
∑

xi,xi−1

∑
si,si−1

P (yi|xi, si)P (si|si−1)

P (xi|xi−1, yi−1)P (xi−1, si−1|yi−1). (24)

The key observation in equation (24) is the
existence of an equivalent channel. More specifically,∑
si
P (yi|xi, si)P (si|si−1) actually represents a quasi-

symmetric channel transition matrix such that its entries are
determined by the entries of the channel transition matrices of
each state and the transition distribution of state probabilities.
To continue, by (6),

P (yi|yi−1) =
∑

xi,xi−1

∑
si,si−1

fsi
(Φsi

(xi, yi))P (si|si−1)

P (xi|xi−1, yi−1)P (xi−1, si−1|yi−1). (25)

By the definition of quasi-symmetry, there exists weakly
symmetric sub-arrays in the channel transition matrix at each
state si. Among these sub-arrays, let us pick Qsi

j of size
|X | × |Yj |. (We assume that the partition of J is identical
across all states.) Let Yjk , for k = 1, . . . , |Yj |, denote the
output values in this sub-array. Therefore, we obtain

P (yjk |yi−1) =
∑

xi,xi−1,si,si−1

fsi
(Φsi

(xi, yjk))P (si|si−1)

P (xi|xi−1, yi−1)P (xi−1, si−1|yi−1). (26)

We desire to maximize (22) over the feedback policies
P (Xi|Xi−1, Y i−1). Setting X = {x1, x2, . . . , xk} and denot-
ing the feedback policies by

P (Xi = xl|xi−1, yi−1) = ϕi(xl), for l = 1, . . . , k, (27)
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we can write

P (yj1 |yi−1) =
∑

si,si−1,xi−1

P (si|si−1)P (xi−1, si−1|yi−1)

{ϕi(x1)fsi
(Φsi

(x1, yj1)) + · · ·+ ϕi(xk)fsi
(Φsi

(xk, yj1))} ,

P (yj2 |yi−1) =
∑

si,si−1,xi−1

P (si|si−1)P (xi−1, si−1|yi−1)

{ϕi(x1)fsi
(Φsi

(x1, yj2)) + · · ·+ ϕi(xk)fsi
(Φsi

(xk, yj2))} ,

and,

P (yj|Yj |
|yi−1) =

∑
si,si−1,xi−1

P (si|si−1)P (xi−1, si−1|yi−1){
ϕi(x1)fsi

(Φsi
(x1, yj|Yj |

)) + · · ·+ ϕi(xk)fsi
(Φsi

(xk, yj|Yj |
))
}
.

It should be noted that, each fsi
(Φsi

(xi, yjk)) corresponds
to an entry in the channel transition matrix Qsi at state si.
We also know that, the rows of the sub-array Qsi

j are permu-
tations of each other. In other words, each fsi(Φsi(xi, yjk))
value appears exactly |X | times in the sub-array Qsi

j . More-
over, the feedback policy ϕi(xl) is multiplied by a dif-
ferent fsi

(Φsi
(xi, yjk)) value in each of the equations of

P (yjk |yi−1) given above. Therefore,
∑|Yj |
k=1 P (Yi = yjk |yi−1)

is equal to

∑
si,si−1,xi−1

P (si|si−1)P (xi−1, si−1|yi−1)
|Yj |∑
k=1

fsi
(Φsi

(xi, yjk))

(28)

where
∑|Yj |
k=1 fsi(Φsi(xi, yjk)) is the sum of any row in the

sub-array Qsi
j and is equal to constant (by the weak-symmetry

of sub-array Qsi
j ). Note that, (28) is independent of the

feedback policies. Similarly for all other sub-arrays, assuming
that there are m sub-arrays, their conditional output sums
will be independent of the feedback policies. Let us denote
these sums by Ω1, . . . ,Ωm. More specifically for sub-array
i, let Ωi =

∑|Yi|
k=1 P (Yk = yik |yi−1). Then the optimization

problem in (23) now becomes,

argmax
Ωi,j

−
m∑
i=1

|Yi|∑
j=1

Ωi,j log Ωi,j (29)

where
∑m
i=1

∑|Yi|
j=1 Ωi,j = 1 and Ωi,j , j = 1, . . . , |Yi|

denotes conditional output probabilities in sub-array i. For
each sub-array i, we need to find the Ωi,j values that maximize∑|Yi|
j=1 Ωi,j log Ωi,j . By the log-sum inequality, we have that

−
|Yi|∑
j=1

Ωi,j log Ωi,j ≤ −
|Yi|∑
j=1

Ωi,j log

∑|Yi|
j=1 Ωi,j
|Yi|

(30)

with equality iff

Ωi,s = Ωi,t ∀s, t ∈ {1, . . . , |Yi|}. (31)

In other words, for the sub-array i, the conditional entropy
is maximized iff the conditional output probabilities in this

sub-array are identical. Since this fact is valid for the other
sub-arrays, to maximize the conditional entropy we need to
(31) to be valid for all sub-arrays.

At this point, we have shown that the conditional output
entropy is maximized if the conditional output probabilities
are identical for each sub-array. In order to complete this step,
we have to show that this is achieved by uniform feedback
policies.

Now, let us consider two conditional output probabilities,
P (Yi = yjs |yi−1) and P (Yi = yjt |yi−1), in sub-array i. Then
P (Yi = yjs |yi−1) = P (Yi = yjt |yi−1) which implies that

k∑
l=1

ϕi(xl)fsi(Φ(xl, yjs)) =
k∑
l=1

ϕi(xl)fsi(Φ(xl, yjt)). (32)

However, for a fixed output
∑k
l=1 fsi(Φ(xl, yjs)) returns the

sum of the column corresponding to output yjs (similarly
for yjt ) and since sub-array i is weakly symmetric the
column sums are equal. Therefore, (32) can be achieved
if ϕi(xl) = ϕi(xm) = 1

k ∀ l,m = 1, . . . , k, by which
we get P (Yi = yjs |yi−1) = P (Yi = yjt |yi−1) =

1
|X |
∑k
l=1 fsi(Φ(xl, yjs)). Thus for other sub-arrays since they

are also weakly-symmetric, the uniform feedback policy will
also satisfy the equivalency of conditional output probabilities.
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