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Abstract— For controlled Rn-valued linear systems driven by
Gaussian noise under quadratic cost criteria, we investigate the
existence and the structure of optimal quantization and control
policies. For a fully observed system, we show that an optimal
quantization policy exists, provided that the quantizers allowed
are ones which have convex codecells. Furthermore, optimal
control policies are linear in the conditional estimate of the
state. A form of separation and estimation applies. As a minor
side result, towards obtaining the main results of the paper,
structural results in the literature for optimal causal (zero-
delay) quantization of Markov sources is extended to systems
driven by control. For the partially observed case, structure of
optimal coding and control policies is presented.

I. JOINTLY OPTIMAL ENCODING AND CONTROL

POLICIES

Consider a Linear Quadratic Gaussian setup, where a sen-

sor encodes its noisy information to a controller. Let xt ∈ Rn

and the evolution of the system be given by the following:

xt+1 = Axt +But + wt,

yt = Cxt + vt, (1)

Here, {wt, vt} is a mutually independent, zero-mean i.i.d.

Gaussian noise sequence, {ut} is an Rm−valued control

action, yt ∈ Rp is the observation variable, and A,B,C
are matrices of appropriate dimensions. We assume that x0

is a zero-mean Gaussian random variable.

Let there be an encoder who has access to the obser-

vation variable yt, and who transmits his information to a

receiver/controller, over a discrete noiseless channel with

finite capacity; that is, he quantizes his information.

Definition 1.1: Let M = {1, 2, . . . ,M} with M = |M|.
Let A be a topological space. A quantizer Q(A;M) is a

Borel measurable map from A to M. ⋄
When the spaces A and M are clear from context, we will

drop the notation and denote the quantizer simply by Q.

Following [30], we refer by a Composite Quantization

(Coding) Policy Πcomp, a sequence of functions {Qcomp
t , t ≥

0} which are causal such that the quantization output at time

t, qt, under Πcomp is generated by a causally measurable

function of its local information, that is, a mapping measur-

able on the sigma-algebra generated by

Ie
t = {y[0,t]}

to a finite set M, the quantization output alphabet given by

M := {1, 2, . . . ,M},
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for 0 ≤ t ≤ T − 1 and i = 1, 2. Here, we have the notation

for t ≥ 1:

y[0,t−1] = {ys, 0 ≤ s ≤ t− 1}.

Let It = (Rp)t+1, be information spaces such that for all

t ≥ 0, Ie
t ∈ It. Thus,

Qcomp
t : It → M.

As elaborated on in [30], we may express the policy Πcomp

as a composition of a Quantization Policy Πi and a Quan-

tizer. A quantization policy T i is a sequence of functions

{Tt}, such that for each t ≥ 0, Tt is a mapping from the

information space It to a space of quantizers Qt. A quantizer,

subsequently is used to generate the quantizer output. A

quantizer will be generated based on the common infor-

mation at the encoder and the controller/receiver, and the

quantizer will map the relevant private information at the

encoder to the quantization output. Such a separation in the

design will also allow us to use the machinery of Markov

Decision Processes to obtain a structural method to design

optimal quantizers, to be clarified further, without any loss

in optimality. Thus, with the information at the controller at

time t being

Ic
t = {q[0,t]}, t ≥ 0,

we can express the composite quantization policy as:

Qcomp
t (Ie

t ) = (Tt(Ic
t ))(Ie

t \ Ic
t ), (2)

We note that, any composite quantization policy Qcomp
t

can be expressed in the form above; that is there is no loss

in the space of possible such policies, since for any Qcomp
t ,

one could define

Tt(Ic
t )(·) := Qcomp

t (Ic
t , ·).

Thus, we let the encoder have policy T and under this

policy generate quantizer actions {Qt, t ≥ 0}, Qt ∈ Qt

(Qt is the quantizer used at time t). Under action Qt, and

given the local information, the encoder generates qit, as the

quantization output at time t. See [30] for further discussion

on such a construction.

The controller, upon receiving the information from the

encoders, generates its decision at time t, also causally: An

admissible causal controller policy is a sequence of measur-

able functions γ = {γt} such that

γt : Mt+1 → Rm, t ≥ 0.

466

Fiftieth Annual Allerton Conference
Allerton House, UIUC, Illinois, USA
October 1 - 5, 2012

978-1-4673-4539-2/12/$31.00 ©2012 IEEE



We call such encoding and control policies, causal or

admissible. Now, suppose that the goal is the computation

of

inf
Πcomp

inf
γ

J(Πcomp, γ, T ) (3)

where

J(Πcomp, γ, T ) :=
1

T
EΠcomp,γ

ν0
[

T−1
∑

t=0

x′
tQxt + u′

tRut].

Here, Q ≥ 0 a positive semi-definite matrix, and R > 0 a

positive definite matrix.

Finally, we assume that the quantizer and the controller

have an agreement on the zero-mean Gaussian probability

measure ν0 on the initial state.

A. Relevant Literature

In this subsection, we provide a literature review on struc-

tural results, existence results, and results on jointly optimal

coding and control policies.

Regarding structural results on optimal causal (zero-delay

or real-time) coding, all the papers to our knowledge consider

a control-free setup: Related papers on causal coding include

the following. If the source is kth-order Markov, then an

optimal causal fixed-rate coder minimizing any measurable

distortion uses only the last k source symbols, together with

the current state at the receiver’s memory [28]. Reference

[27] considers optimal causal coding problem of finite-state

Markov sources over noisy channels with feedback. [30] has

considered optimal causal coding for sources taking values in

Polish spaces, partially observed Markov sources and also for

a class of multi-encoder systems. References [25] and [17]

have considered optimal causal coding of Markov sources

over noisy channels without feedback. [16] has considered

the optimal causal coding over a noisy channel with noisy

feedback. [20] has considered, within a multi-terminal setup,

decentralized coding of correlated sources when the encoders

observe conditionally independent messages given a finitely

valued random variable, and obtained separation results for

optimal encoders. Reference [15] has considered the causal

coding of more general sources, stationary sources, under

a high-rate assumption. An earlier reference on quantizer

design is [7]. Relevant discussions on optimal quantization,

randomized decisions, and optimal quantizer design can be

found in [11] and [32]. A more relaxed version of causality

(allowing delay at the decoder, but not at the encoder) has

been considered in [21], which has established that the opti-

mal optimal causal encoder minimizing the data rate subject

to a distortion for an i.i.d sequence is memoryless. A parallel

line of consideration which is of a rate-distortion theoretic

nature is the sequential-rate distortion proposed in [24], and

the feedforward setup, which has been investigated in [26]

and [8]. For a further literature review, the reader is referred

to [30].

Regarding existence results, there have been few studies:

The existence of optimal quantizers for a one-stage cost

problem has been investigated in [1] and [23] (which have

considered nearest neighbor encoding/decoding rules), and

[32] which has considered quantizers with convex codecells.

For multi-stage settings, reference [31] has considered the

existence problem for the optimal quantization of control-

free Markov sources for a class of Markov sources driven

by an additive Gaussian noise under the restriction that the

quantizers have convex codecells. This class of systems also

includes the setup contained here except that control is not

available in the systems considered in [31]. Also for opti-

mal multi-stage vector quantizers, [5] has obtained existence

results for an infinite horizon setup with discounted costs un-

der a uniform boundedness assumption on the reconstruction

levels.

There is a large literature on jointly optimal quantization

for the LQG problem. In this literature, references [9], [7],

[18], [24], [19], [4] and [10] have considered the optimal

LQG quantization and control with various results on the

optimality or the lack of optimality of the separation principle

with different assumptions in the setups and various conclu-

sions on the structural properties of optimal policies. Among

these, we refer the reader to [9] and [10] for a detailed

account of further, earlier, contributions in the literature. This

literature has considered either the quantization of control

signals (as in [9] and [18]) or the quantization of sensor

information as in the current paper (see [24], [19], [10]).

We also note that [30] provides a discussion for optimal

quantization of control-free linear Gaussian systems.

On a related setting, for scalar Gaussian sources controlled

over scalar Gaussian channels, the jointly optimal policies for

costs of the form (3) have been established in [2] and [3],

where both encoding and control policies are shown to admit

linear forms. This result does not extend to general multi-

dimensional sources and channels, where further conditions

are required in view of what is known as the matching be-

tween the source and channel pairs, see [24] and [12] and

for a counterexample on suboptimality of linear policies, see

[33].

B. Contributions of the paper and summary

Our contribution in this paper, in view of the literature

reviewed above, is that (i) we provide a structural result for

optimal encoders for systems driven by control, and building

on this structural result, (ii) establish a separation theorem

between coding and control which is new to our knowledge

in its generality, as well as (iii) an existence theorem for

optimal quantizers (building on [32] and [31]), and also (iv)

establish the structure of optimal control policies.

Here is a summary of the rest of the paper. In Section

II, we establish the structure of optimal causal (zero-delay)

coding policies for fully observed controlled Markov sources.

In Section III, we consider the fully observed setting in (1)

(that is with yt = xt) and obtain the structure of optimal

control policies. In Section IV, we establish the existence of

optimal quantization policies. The partially observed setting

is discussed in Section V.
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II. STRUCTURAL RESULTS FOR OPTIMAL ZERO-DELAY

CODES FOR CONTROLLED MARKOV SOURCES

In this section, toward obtaining a solution to (3), we

develop structural results for optimal causal composite quan-

tization policies. Consider a fully observed system described

by the following equations

xt+1 = f(xt, ut, wt),

yt = xt, (4)

where the realizations satisfy xt ∈ X, ut ∈ U, with X,U
being complete, separable, metric (that is Polish) spaces (thus

including spaces such as Rn or a finite set). Suppose that the

goal is the minimization,

inf
Πcomp

inf
γ

EΠcomp,γ
ν0

[
T−1
∑

t=0

c(xt, ut)], (5)

over all policies Πcomp, γ with the random initial condi-

tion x0 having probability measure ν0. Here c(·, ·), is a

measurable function and ut = γt(q[0,t]) for t ≥ 0. Here,

the information and quantization restrictions are as stated in

Section I.

The proofs of the results below essentially follow from

Theorems 2.4 and 2.5 in [30] with additional technical intri-

cacies due to the presence of control actions. The first one

can be regarded as an extension of Witsenhausen’s structural

theorem [28], and the second one can be regarded as an

extension of the results of Walrand and Varaiya [27] (see

also [25]).

For the proofs of the results below, see [29].

Theorem 2.1: For system (4), under the information struc-

ture described in the previous section and the objective given

in (5), any composite quantization policy (with a given con-

trol policy) can be replaced, without any loss in performance,

by one which only uses xt and q[0,t−1] at time t ≥ 1 while

keeping the control policy unaltered. This can be expressed

as a quantization policy which only uses q[0,t−1] to generate

a quantizer, where the quantizer uses xt to generate the

quantization output at time t.
Let P(X) denote the set of probability measures on B(X)

(where B(X) denotes the Borel σ-field on X) under the

topology of weak convergence (please see Section II.B in

[30] for the use of such a topology) and define πt ∈ P(X)
to be the regular conditional probability measure given by

πt(·) = P (xt ∈ ·|q[0,t−1], u0,t−1) or since the control ac-

tions are determined by the quantizer outputs given a control

policy, πt(·) = P (xt ∈ ·|q[0,t−1]), that is

πt(A) = P (xt ∈ A|q[0,t−1]), A ∈ B(X).

Theorem 2.2: For system (4), under the information struc-

ture described in the previous section and the objective given

in (5), any causal composite quantization policy can be re-

placed, without any loss in performance, by one which only

uses the conditional probability measure πt(·) = P (xt ∈
·|q[0,t−1]), the state xt, and the time information t, at time t.
This can be expressed as a quantization policy which only

uses {πt, t} to generate a quantizer, where the quantizer uses

xt to generate the quantization output at time t.
Definition 2.1: An M -cell quantizer Q on Rn is a (Borel)

measurable mapping Q : Rn → M, and Q denotes the

collection of all M -cell quantizers on Rn.

Note that each Q ∈ Q is uniquely characterized by its

quantization cells (or bins) Bi = {x : Q(x) = i}, i =
1, . . . ,M which form a measurable partition of Rn.

Remark 2.1:

(a) As in [32], we allow for the possibility that some of the

cells of the quantizer are empty.

(b) In source coding theory, a quantizer is a mapping Q :
Rn → Rn with a finite range. Thus Q is defined by a

partition and a reconstruction value in Rn for each cell

in the partition. That is, for given cells {B1, . . . , BM}
and reconstruction values {c1, . . . , cM} ⊂ Rn, we have

Q(x) = ci if and only if x ∈ Bi. In our definition, we

do not include the reconstruction values (and the con-

troller/receiver policy computes the decision outputs).

As discussed in [32], a quantizer Q with cells

{B1, . . . , BM}

can also be characterized as a stochastic kernel Q from Rn

to {1, . . . ,M} defined by

Q(i|x) = 1{x∈Bi}, i = 1, . . . ,M

We will endow the quantizers with a topology induced by

such a stochastic kernel interpretation. If P is a probability

measure on Rn and Q is a stochastic kernel from Rn to M,

then PQ denotes the resulting joint probability measure on

Rn ×M.

Let P(RN) denote the family of all probability measures

on (RN ,B(RN)) for some N ∈ N. Let {µn, n ∈ N} be a

sequence in P(RN ). It is said to converge to µ ∈ P(RN )
weakly if

∫

RN

c(x)µn(dx) →
∫

RN

c(x)µ(dx)

for every continuous and bounded c : RN → R.

The following sequential convergence notion is considered

for quantizers in this paper.

Definition 2.2 ([32]): A quantizer sequence Qn converges

to Q weakly at P (Qn → Q weakly at P ) if PQn → PQ
weakly.

Consider the set of probability measures

Θ := {ζ ∈ P (Rn ×M) : ζ = PQ,Q ∈ Q},

on Rn ×M having fixed input marginal P , equipped with

weak topology. This set is the (Borel measurable) set of the

extreme points on the set of probability measures on Rn×M
with a fixed input marginal P [6]. Borel measurability of Θ
follows from [22] since set of probability measures on Rn×
M with a fixed input marginal P is a convex and compact

set in a complete separable metric space, and therefore, the

set of its extreme points is Borel measurable.
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In view of this observation, we note that the class of

quantization policies which admit the structure suggested in

Theorem 2.2 is an important one. We henceforth define:

ΠW :=

{

Πcomp = {Qcomp
t , t ≥ 0}

: ∃Υt : P(X) → Q

Qcomp
t (It) = (Υt(πt))(xt), ∀It, Pa.s.

}

, (6)

to represent this class of policies.

III. FULLY OBSERVED CASE: SEPARATION OF

ESTIMATION ERROR AND CONTROL AND DUAL EFFECT

We now consider the original LQG problem. By Theo-

rem 2.2, an optimal composite quantization policy will be

within the class ΠW . Let us fix such a composite quantization

policy. In the following, we adopt a dynamic programming

approach and establish that the optimal controller is linear in

its estimate. This fact applies naturally for the terminal time

stage control. That this also applies for the previous time

stages follows from dynamic programming as we observe in

the following.

First consider the terminal time t = T − 1. For this time

stage, to minimize E[x′
tQxt + u′

tRut], the optimal control

is uT−1 = 0 a.s..

To obtain a solution for t = T − 2, we look for a solution

to:

min
γt

E

[(

x′
tQxt + u′

tRut

+E[(Axt +But + wt)
′Q(Axt +But + wt)|Ic

t , ut]

)

∣

∣

∣

∣

Ic
t

]

. (7)

By completing the squares, and using the Orthogonality Prin-

ciple, we obtain that the optimal control is linear and is given

by

uT−2 = LT−2E[xT−2|q[0,T−2]],

with

LT−2 = −R−1B′QA.

For t < T−2, to obtain the solutions, we will first establish

that the estimation errors are uncorrelated. Towards this end,

define for 1 ≤ t ≤ T − 1 (recall that the control actions are

determined by the quantizer outputs):

Ic
t = {q[0,t], u[0,t−1]},

and note that

m̃t+1 := E[xt+1|Ic
t+1] = E[Axt +But + wt|Ic

t+1].

It then follows that

m̃t+1 = E[xt+1|Ic
t+1]

= E[xt+1 − E[xt+1|Ic
t ] + E[xt+1|Ic

t ]|Ic
t+1]

= E[xt+1|Ic
t ] + E[xt+1 − E[xt+1|Ic

t ]|Ic
t+1]

= Am̃t +But + w̄t,

with

w̄t = (E[xt+1|Ic
t+1]− E[xt+1|Ic

t ]). (8)

Here, w̄t is orthogonal to the control action variable ut, as

control actions are determined by the past quantizer outputs

and iterated expectation leads to the result that conditioned

on Ic
t , w̄t is zero mean, and is orthogonal to Ic

t . Now, for

going into earlier time stages, the dynamic programming

recursion for linear systems driven by an uncorrelated noise

process would normally apply, since the estimate process

m̃t is driven an uncorrelated noise (though, not necessarily

independent) process E[xt+1|Ic
t+1]−E[xt+1|Ic

t ]. However,

this lack of independence may be important, as elaborated

on in [19]. Using the completion of the squares method, we

can establish that the optimal controller at time t will be

linear, provided that the random variable w̄′
tQw̄t does not

depend on uk, k ≤ t under any policy. A sufficient condition

for this is that the encoder is a predictive one (see [4], [19]

and [24]).

Definition 3.1: A predictive quantizer policy is one where

for each time stage t, the quantization has the form that the

quantizer at all time stages subtracts the effect of the past

control terms, that is, at time t it has the form

Qt(xt −
t−1
∑

k=0

At−k−1Buk),

and the past control terms are added at the receiver. Hence,

the encoder quantizes a control-free process, defined by:

x̄t+1 = Ax̄t + wt,

the receiver generates the quantized estimate and adds

t−1
∑

k=0

At−k−1Buk,

to compute the estimate of the state at time t. ⋄
A predictive encoder is depicted in Figure 1.

∑
t−1

k=0
At−k−1Buk

∑
t−1

k=0
At−k−1Buk

qt
xt utut

Quantizer Estimator ControllerLinear System

Fig. 1: For the LQG problem, a predictive encoder is without

loss.

One question, which has not been explicitly addressed

in [4], [19] and [24], is whether restriction to this class of

quantization policies is without loss.

We have the following key lemma. See [29] for a proof.

Lemma 3.1: For problem (3), for any quantizer policy in

class ΠW (which is without any loss as a result of Theorem

2.2), there exists a quantizer which satisfies the form of a

predictive quantizer (see Definition 3.1) and attains the same

performance under an optimal control policy.
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Remark 3.1: We note that the structure in Definition 3.1

separates the estimation from the control process in the sense

that the estimation errors are independent of the control ac-

tions or policies. Hence, there is no dual effect of the control

actions, in that the estimation error at any given time is

independent of the past applied control actions. ⋄
As a consequence of the lack of dual effect, the cost

function becomes

J(Πcomp, γ, T )

:=
1

T
EΠcomp,γ

ν0
[

T−1
∑

t=0

m̃′
tQm̃′

tQxt

+u′
tRut + (xt − m̃t)

′Q(xt − m̃t)].

We have thus established above that the optimal control

is linear at t = T − 3 as well, and as part of the proof of

Lemma 3.1, we saw that this applies for all time stages. We

have the following result (see also [19] in a related context

which assumes the structure of Definition 3.1):

Theorem 3.1: For the minimization problem (3), an op-

timal control policy is given by ut = LtE[xt|q[0,t]], where

Lt = −(R+B′Pt+1B)−1B′Kt+1A,

and

Pt = A′
tKt+1B(R+B′Kt+1B)−1B′Kt+1A,

Kt = A′
tKt+1At − Pt +Q,

with KT = PT−1 = 0.

Therefore, we obtain for t ≥ 0, the unnormalized value

function for any time stage t as

Jt(Ic
t ) = E[x′

tKtxt|Ic
t ]

+

T−1
∑

k=t

(

E[(xt − E[xt|Ic
t ])

′Q(xt − E[xt|Ic
t ])]

+E[w̄′
tKt+1w̄t]

)

,

with

J(Πcomp, γ, T ) =
1

T
J0(Ic

0).

To obtain a more explicit expression for the value function

Jt, we have the following analysis. Given a positive definite

matrix Λ define an inner-product as

〈z1, z2〉Λ = z′1Λz2.

and the norm generated by this inner-product as ||z||Λ =√
z′Λz. We now note the following:

E

[

||E[xt+1|Ic
t+1]− E[xt+1|Ic

t ]||2Λ
]

= E

[

||(E[xt+1|Ic
t+1]− xt+1)||2Λ]

+E[||(xt+1 − E[xt+1|Ic
t ])||2Λ

]

+2E[〈(E[xt+1|Ic
t+1]− xt+1), (xt+1 − E[xt+1|Ic

t ])〉Λ]

Note that

E

[

〈(E[xt+1|Ic
t+1]− xt+1), (xt+1 − E[xt+1|Ic

t ])〉Λ
]

= E

[

− 〈(E[xt+1|Ic
t+1]− xt+1), (E[xt+1|Ic

t ])〉Λ

+〈(E[xt+1|Ic
t+1]− xt+1), (xt+1)〉Λ

]

= E

[

〈(E[xt+1|Ic
t+1]− xt+1), (xt+1)〉Λ

]

(9)

= −E[||(E[xt+1|Ic
t+1]− xt+1)||2Λ] (10)

where (9)-(10) follow from the orthogonality property of

minimum mean-square estimation and that E[xt+1|Ic
t ] is

measurable on σ(Ic
t+1), the sigma-field generated by Ic

t+1.

Using these, with some further analysis [29], the cost

function writes as:

Jt(Ic
t ) = E[x′

tKtxt|Ic
t ]

+E[(xt − E[xt|Ic
t ])

′(Q +A′Kt+1A)(xt − E[xt|Ic
t ])]

+

T−1
∑

k=t+1

E[(xk − E[xk|Ic
k])

′(Q+A′Kk+1A−Kk)

×(xk − E[xk|Ic
k])]

+

T−1
∑

k=t

E[w′
kKk+1wk]. (11)

Now that we have established the solution to the optimal con-

trol problem, we address the optimal quantization problem

below.

IV. EXISTENCE OF OPTIMAL QUANTIZATION POLICIES

In (11) above, we have separated the costs due to con-

trol and quantization. Therefore, for the optimal quantization

policy, we can effectively consider the setting where in (1),

ut = 0 and the quantizer is designed for this system. Hence,

we consider below the system xt+1 = Axt + wt.

We first note that, for K > 0,

E

[

(xt − E[xt|Ic
t ])

′K(xt − E[xt|Ic
t ])

∣

∣

∣

∣

Ic
t−1

]

=
∑

i∈M

inf
γt(i)

∫

Rn

1{qt=i}πt(dx)(xt − γt(i))
′K

×(xt − γt(i))

Thus, from (11), for T ∈ N, we can define a cost to be

minimized by a composite quantization policy as:

J(Πcomp, T )

= EΠcomp

ν0
[
1

T

(

x′
0K0x0 +

T−1
∑

t=0

ct(πt, Qt)

+E[w′
tKt+1wt]

)

],

where

πt(·) = P (xt ∈ ·|q[0,t−1]),
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and ct(πt, Qt) is

∑

i∈M

inf
γt(i)

∫

Rn

1{qt=i}πt(dxt)(xt − γt(i))
′Pt(xt − γt(i)),

with γ̃ = {γt, t ≥ 0} now denoting the receiver policy and

Pt = (Q + A′Kt+1A − Kt) and P0 = Q + A′K1A. Note

that, E[1{qt=i}(x̄t − γt(i))
′Pt(x̄t − γt(i))] is minimized by

the conditional expectation given the bin information. As a

consequence, an optimal receiver and hence control policy

always exists.

In the analysis for an optimal quantization policy, as was

also motivated in [32], we will restrict the quantizers to have

convex codecells. As discussed in [13], by the separating hy-

perplane theorem, there exist pairs of complementary closed

half spaces {(Hi,j , Hj,i) : 1 ≤ i, j ≤ M, i 6= j} such that

for all i = 1, . . . ,M ,

Bi ⊂
⋂

j 6=i

Hi,j .

Since B̄i :=
⋂

j 6=i Hi,j is a closed convex polytope for each

i, if the probability measure P admits a density function,

then one has P (B̄i \Bi) = 0 for all i = 1, . . . ,M . One can

thus obtain a (P–a.s) representation of Q by the M(M−1)/2
hyperplanes hi,j = Hi,j ∩Hj,i. One can represent a hyper-

plane in Rn by a vector of n + 1 components a1, a2, . . . , b
with

∑

k |ak|2 = 1, and h = {x ∈ Rn :
∑

aixi = b}. A

sequence of quantizers converges if each of the coefficients

defining hyperplanes in the quantizer converges pointwise.

Assumption 4.1: The quantizers have convex codecells

with at most a given number of cells; that is the quantiz-

ers live in Qc(M), the collection of k-cell quantizers with

convex cells where 1 ≤ k ≤ M .

Let ΠC
W denote the set of all policies in ΠW (defined in

(6)) which in addition satisfy Assumption 4.1 (i.e., Qt ∈
Qc(M) for all t ≥ 0).

The properties of conditional probability lead to the filter-

ing expression for πt(dxt):
∫

xt−1

πt−1(dxt−1)P (qt−1|πt−1, xt−1)P (dxt|xt−1)
∫

xt−1

∫

xt
πt−1(dxt−1)P (qt−1|πt−1, xt−1)P (dxt|xt−1)

.

Here, the term P (qt−1|πt−1, xt−1) is determined by the quan-

tizer action Qt−1. In view of this observation, we have the

following result.

Lemma 4.1: [30] With P(Rn) denoting the set of proba-

bility measures on B(Rn) under weak convergence topology,

the conditional probability measure process and the quanti-

zation process (πt(x), Qt) form a controlled Markov process

in P(Rn)×Qc(M).
Theorem 4.1: There exists an optimal composite coding

policy in ΠC
W such that

inf
Πcomp∈ΠC

W

J(Πcomp, T ),

is achieved. With,

J ′
0(π) := min

Πcomp∈ΠC
W

J(Πcomp, T )

the following dynamic programming recursion holds for 0 ≤
t ≤ T − 1:

TJ ′
t(πt) = min

Q∈Q

(

ct(πt, Qt) + TE[J ′
t+1(πt+1)|πt, Qt]

)

with J ′
T (·) = 0. Furthermore, the optimal control policy is

linear in the conditional estimate and is given in Theorem

3.1. ⋄
The proof of Theorem 4.1 follows from the separation

argument considered since one can consider a control-free

Markov source which is to be quantized. Therefore, the ex-

istence result follows from Yüksel and Linder [31] which

considers a control-free setting.

V. PARTIALLY OBSERVED CASE: STRUCTURAL RESULTS

In this section, we consider the partially observed model

(1) with W = E[wtw
′
t], V = E[vtv

′
t].

To obtain a solution, we again first separate the estimation

and control terms, as in the fully observed case. The solution

to the control terms then will follow from classical results

in LQG theory. The solution for the quantization component

will follow from the results earlier and Theorem 4.1 in [30].

Define m̄t := E[xt|y[0,t]], which is computed through a

Kalman Filter. Recall that by the Kalman Filter (see [14])

with

Σ0|−1 = E[x0x
′
0]

and for t ≥ 0,

Σt+1|t = AΣt|t−1A
′ +W

−(AΣt|t−1C
′)(CΣt|t−1C

′ + V )−1(CΣt|t−1A
′),

the following recursion holds for t ≥ 0 and with m̃−1 = 0:

m̄t = Am̄t−1 +But−1

+Σt|t−1C
′(CΣt|t−1C

′ + V )−1(CA(xt−1 − m̃t−1)

+vt).

Now, note that the cost

inf
Πcomp

inf
γ

J(Πcomp, γ, T ) (12)

with

J(Πcomp, γ, T ) =
1

T
EΠcomp,γ

ν0
[
T−1
∑

t=0

x′
tQxt + u′

tRut],

can be written equivalently as

J(Πcomp, γ, T ) =
1

T
EΠcomp,γ

ν0
[

T−1
∑

t=0

m̄′
tQm̄t + u′

tRut]

+
1

T

T−1
∑

t=0

(xt − m̄t)
′Q(xt − m̄t),

since the quadratic error (xt−m̄t)
′Q(xt−m̄t) is independent

of the coding or the control policy (and only depends on the

estimation performance at the encoder).

Thus, we have that the process (m̄t,Σt+1|t) and ut form

a controlled Markov chain and we can invoke Theorem 2.2:
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Any causal quantizer, can be, without any loss replaced with

one in ΠW (where the state is now (m̄t,Σt+1|t) instead

of xt) as a consequence of Theorem 2.2. Furthermore, any

quantizer in ΠW can be replaced without any loss with a

predictive quantizer with the new state m̄t, as a consequence

of Lemma 3.1 applied to the new state with identical argu-

ments: Observe that the past control actions do not affect the

evolution of Σt+1|t.

We then have the following result.

Theorem 5.1: For the minimization problem (12), the op-

timal control policy is given by ut = LtE[xt|q[0,t]], where

Lt = −(R+B′Pt+1B)−1B′Kt+1A,

and

Pt = A′
tKt+1B(R+B′Kt+1B)−1B′Kt+1A,

Kt = A′
tKt+1At − Pt +Q,

with KT = PT−1 = 0.

Given the optimal control policy, the following result is ob-

tained.

Theorem 5.2: For the minimization problem (12), the op-

timal cost it given by 1
T
J0(Π

comp, T ), where J0(Π
comp, T )

is given by

E[x′
0K0x0]

+E[(x0 − E[x0|Ic
0 ])

′(Q +A′K1A)(x0 − E[x0|Ic
0 ])]

+

T−1
∑

t=1

E[(xt − E[xt|Ic
t ])

′(Q +A′Kt+1A−Kt)

×(xt − E[xt|Ic
t ])]

+
T−1
∑

t=0

E[(xt − m̄t)
′Q(xt − m̄t) + w′

tKt+1wt]. (13)

Now that we have separated the cost terms, and given

that we can use a predictive encoder without any loss, we

consider the quantization for a control-free system and the

following result essentially follows from Theorem 4.1 in

[30].

Theorem 5.3: For the minimization of the cost in (3), any

causal composite quantization policy can be replaced, with-

out any loss in performance, by an encoder which only uses

the output of the Kalman Filter and the information available

at the receiver. Furthermore, any causal coder can be replaced

with one which only uses the conditional probability on m̄t,

P (dm̄t|q[0,t−1]), and the realization (m̄t,Σt|t−1, t) at time

t. (see Figure 2). ⋄

VI. CONCLUSION

In this paper, joint optimization of encoding and control

policies have been obtained for the Linear Quadratic Gaus-

sian problem, and it has been established that separation of

estimation and control applies, an optimal quantizer exists

under technical assumptions on the space of policies con-

sidered and optimal control policy is linear in its condi-

tional estimate. Results have been extended to the partially

observed case, where the structure of optimal coding and

control policies is presented.

Linear System KF Encoder Controller

xw y q u

Fig. 2: Separation of Estimation and Quantization: When the

source is Gaussian, generated by the linear system (1), the

cost is quadratic, and the observation channel is Gaussian, the

separated structure of the encoder above involving a Kalman

Filter (KF) is optimal. Here, the encoder is a predictive

encoder without any loss.

As a side result, towards obtaining the main results of the

paper, structural results in the literature for optimal causal

(zero-delay) quantization of Markov sources is extended to

systems driven by control.
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