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Abstract— We study the problem of distributed stabilization
of linear systems over communication channels. Building on
our earlier work, we adopt an information theoretic look at
the signaling problem when the system and observations are
noisy. We provide a lower bound on the average sum-rate,
which is tight when the system noise is absent. We further
show that when the system and observations are noisy, the
signaling process involves coding over an unknown channel with
unequal side information between the stations, and as such its
construction is fairly complicated. This leads to new insights
on designing distributed controllers connected over channels.

I. I NTRODUCTION

The use of digital and wireless channels such as the
Internet or bus lines (as in a Controller Area Network (CAN))
in control systems has become common place, in particular
in the context of distributed systems. Some typical areas
of applications include environmental detection, detection of
high-way congestion, unmanned vehicles, surveillance and
rescue operations, as well as problems in formation control
and aerospace applications; see for instance [12], [15]. The
design and synthesis of control policies and algorithms in
such systems connected over channels require an understand-
ing on the quantitative value of partial information available
at the controllers with regard to system performance.

Information theory provides a quantitative meaning to the
value of a single bit, a meaning which however is only
operational in the infinite-block case, except for special chan-
nels, such as Gaussian channels. Nonetheless, information
theory provides limits to what is possible to transmit, and
surprisingly perhaps, these bounds are closely attainable in
certain settings, even in non-Gaussian contexts.

Distributed systems are especially challenging since the
information structure can fall into the categories such that
the optimization problem can be non-tractable. The so-called
non-classical information structure is an example of such
cases. However, there are instances when the non-classical
information patterns do lead to computable solutions.

In this paper, we study the communication rate require-
ments in a class of decentralized systems, where two dis-
tributed stations attempt to stabilize a plant. We make the
problem formulation precise in the following.
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Fig. 1: A Multi-Controller System.

Consider a class of multi-stationn-dimensional discrete-
time, two controller, LTI systems

x(t+ 1) = Ax(t) +B1u1(t) +B2u2(t) + w(t) ,
yi(t) = Cix(t) + vi(t) , i = 1, 2, (1)

where(A, [B1|B2]) is controllable and(A, [(C1)T |(C2)T ]T )
is observable, but the individual pairs may not enjoy this,
such that(A,Bi) may not be controllable or(A,Ci) may
not be observable,i = 1, 2. Here,x(t) ∈ Rn is the state of
the system,ui(t) ∈ Rmi is the control applied by station
i, and yi(t) ∈ Rpi is the observation available at stationi
at time t. Here{w(t), vi(t)} are disturbance processes with
arbitrary distributions, whose components are i.i.d random
variables. We assume that the initial statex0 is a random
vector with a continuous probability density function, with
a compact support set.

The control signalsui, i = 1, 2, are coded and decoded
over discrete noiseless channels with finite capacity. Hence,
the applied control and transmitted messages follow a coding,
binary representation, and a decoding process. We assume
fixed-rate encoding, that is, the rate is defined as the (base-
2) logarithm of the number of symbols to be transmitted:
The coder maps the local observations up to time t to
{1, 2, . . . ,W i

t }, which is the quantizer codebook at stationi
at time t. Hence, at each timet, station i sendslog2(W i

t )
bits over the channel to the plant. Now, the information
available at the plant is as follows. The plant knows the
codebooks used by each controller, to be able to perform
decoding. The decoder output at the plant with regard to the
information received from stationi at timet, which we again
denote asuit ∈ Rmi , is generated through a (memoryless)
mapping from{1, 2, . . . ,W i

t } to Rmi . In addition to the



quantizer policy and codebook, the plant also knows when
the controllers at each station choose to signal information
or to apply control. This is needed to ensure that the plant
is capable of negating the effect of signaling.

This paper considers multi-controller systems as opposed
to multi-sensor systems. One important difference between
the decentralized multi-controller systems and and the multi-
sensor systems with a centralized controller is the follow-
ing: In a multi-sensor structure, there exists a centralized
controller which assembles the observations from multiple
sensors, generates an estimate (as in a fusion center) and
computes the control. However, in a multi-controller setup,
there is no centralized decoder at the plant. This is due to the
fact that in a realistic scenario, the plant should be merely
acting on the control signals received, for otherwise there
would not be any need for the transmission of control over
a communication channel. It should be observed, however,
that the plant can still have local feedback control, and the
discussion here is with regard to the control signals sent
over to a remote location. If the plant is able to do filtering
with regard to the controller actions, then the results with
regard to the multi-sensor setup will be applicable. As an
example, consider a robot vehicle which is being remotely
controlled. The remote controller can develop an estimate
on the vehicle’s position, using the system dynamics, past
received observations and the previously transmitted control
signals. However, the vehicle should be designed so that it
can act on any of the commands generated by the remote
controllers, such as reducing acceleration, changing direction
and so forth, even when the commands are random and hence
unpredictable.

It should be noted that, in our framework the plant is
not allowed to make joint decoding, for the reasons in [1].
Otherwise, the problem reduces to the analysis of multi-
sensor systems as becomes an information relaying problem
as was explicitly discussed in [13].

Let R denote the set of average (over time horizon) rates
on 2 channels which lead to (decentralized) stabilization:

R = {R1, R2 : ∃{u1
[0,∞), u

2
[0,∞)}

G <∞, lim sup
T→∞

E[|x(T )|2] ≤ G },

whereRi = limT→∞
1
T

∑T
k=1 log2(W i

t ), whereW i
t is the

number of symbols transmitted by stationi at time t, i =
1, 2. We seek to obtain bounds on the minimum achievable
average sum rateminR

∑2
i=1R

i, such that decentralized
stabilization is possible. �

Literature Review
Decentralized stabilization has attracted considerable interest
in the literature [10], [8]. One of the accomplishments in this
domain is the introduction ofdecentralized fixed modes[6]
and graph-theoretic characterization of stability [8] (see also
[10]).

With regard to communication theoretic issues, most of
the efforts in the literature assume either the multisensor
structure or the multicontroller structure. For the multisensor
structure, due to the assumption of a centralized decoder,

one can use Slepian-Wolf coding theorem to arrive at the
rate requirements. Reference [2] provides such a treatment
of distributed control, and shows that the minimum rate re-
quired for stability of multi-sensor systems with a centralized
controller is the same as the rate required in the centralized
case. Reference [19] studies the rate-requirements for multi-
sensor systems, and provides constructions. Reference [13]
considers the optimal binning constructions for multi-sensor
systems. [17] studies multi-sensor systems over erasure chan-
nels with feedback. Reference [4] carries out a sufficient
rate analysis in a multicontroller setting, where the open-
loop state dynamics are decoupled, and [18] studies the rate
requirements for multi-controller systems when the obser-
vations are noisy. Reference [14] considers multi-controller
systems with time-invariant policies where the sensors use
state feedback. Reference [16] considers stabilizing coding
and sensing policies in a distributed setting.

An earlier work [1] studied the minimum sum-rate re-
quired for the stabilizability of noiseless multi-controller
systems. This paper builds on the approach originated in
[1]. The contribution of this paper is to show that the result
obtained in [1] provides a bound on the noisy case, which
is, of course, not a surprising result. Furthermore, this paper
shows that when noise is present in the system, the bound
obtained is not tight. A discussion on signaling when system
and observation noise is present suggests design schemes for
distributed control over noisy channels.

II. D ECENTRALIZED STABILIZABILITY AND A NEW

CANONICAL FORM

The discussion in this section follows [1]. In the following,
we introduce some additional notation, and revisit decentral-
ized stabilizability and connectivity.

We denote the controllability matrix for stationi by Ci,
where

Ci =
[
Bi|ABi| . . . |An−1Bi

]
,

and the observability matrix for stationj by Oj , which is
given by

Oj =
[
(Cj)T |(CjA)T | . . . |(CjAn−1)T

]T
.

We letN i denote the unobservable subspace of stationi,
andKi denote its controllable subspace. In other words,N i

is the null-space ofOi, andKi is the range space ofCi. We
defineOi to be the subspace orthogonal toN i, and call it
the observable subspace by a possible abuse of terminology.
We callLi the uncontrollable subspace of theith controller.

We define amodeof a linear system as an eigenvector
corresponding to an (open-loop) eigenvalue. The set of
unstable modes is the set of eigenvectors of the system
matrix corresponding to unstable eigenvalues. These notions
naturally extend to generalized eigenvectors and to complex
eigenvalues. When the systems are converted to controllable
canonical forms, themodesare preserved; however, the states
might be subject to a linear transformation.

We next review the notion of connectivity: IfN j 6⊃ Ki,
then stationi can affect the observations of stationj, and thus



communicate to stationj via control [9], which we capture
through the notationi→ j. In this case, stationi is said to be
connectedto stationj. If every station is connected to every
other station, possibly through other stations, the system is
said to be strongly connected.

Through communication via the plant, the controllable
subspace can be expanded and the unobservable subspace can
be shrunk [9]. The following result follows from [8]:Decen-
tralized stabilization in a multi-controller setting is possible,
if the system is jointly controllable, jointly observable, and
strongly connected. Such a stabilization is in general possible
through time-varying controls.

We refer the reader to [10] for conditions of decentralized
stabilization with a more restrictive set of controllers (such
as, time-invariant, output feedback controllers, for which the
absence of decentralized fixed modes is required in addition
to joint controllability, observability, and strong connectiv-
ity). Hereafter, while performing the rate analysis, we will
assume that in the absence of any structural restriction on
the class of controllers, the system is decentrally stabilizable
in the sense of [8].

A linear system can be expressed in a controllable canon-
ical form such thatx = [x1|x2] and {x1} ⊂ K1. This can
be achieved via a transformation matrixP such that the first
n1 columns ofP−1 are the linearly independent columns in
K1. Due to the joint controllability assumption, it must be
that {x2} ⊂ K2. The rest of the matrixP−1 can consist
of linearly independent columns so long as the matrixP
is full-rank ([20] pp.163). In the following we partition the
state space:x = [x1|x2], where

x1 = [x1, x3], x2 = [x2, x4]

so that {x1} ⊂ K1 ∩ O1, {x2} ⊂ K2 ∩ O2,{x3} ⊂
K1, {x3} ⊂ O1 ∪ O2, {x4} ⊂ K2, {x4} ⊂ O1 ∪ O2. We
obtainP−1 as a matrix whose firstdim(x1) columns span
K1∩O1, the rest is arbitrary so long asP is full-rank. In this
case, we obtainΛ1 as the upper-triangular ofPAP−1, as a
matrix in the controllable mode expansion. In this case, the
transformed system takes an upper-block triangular form. We
apply the same approach for the modes inK2∩O2. Finally,
once the dimension of the system is reduced, the same
form is applied for the remaining blocks. The associated
matrices in the block-diagonal can be represented asΛi.
Hence, successively an upper triangular system matrix can
be generated. We analyze the system starting from the lower
block of the block-diagonal form.

We now provide a lower bound on the average sum rate.
In essence, the following was proven in [1]. However, due
to the presence of noise, there are a few technical steps and
we will briefly discuss those in the development.

Theorem 2.1: Assume that unrestricted decentralized sta-
bilization is possible, that is, the system is jointly con-
trollable, jointly observable, and strongly connected. Sup-
pose the the modes are ordered as{n1, n2, . . . , nn},
and {xn1 , xn2 , . . . , xnn} denote the ordered states. Let
N be the set of such orderings, and fori ≥ 1,
Mi :=span(xn1 , xn2 , . . . , xni). Then, a lower bound on the

sum rate required, between the controllers and the plant for
stabilizability is given by

min
{n1,n2,...,nn}∈N

{ ∑
|λi|>1

(ηMi
+ 1)

(
log2(|λi|)

)}
, (2)

where

ηi =

{
1 if {xi} * (Om ∪Mi) ∩ (Km ∪Mi),m = 1, 2
0 else

The following example, taken from [1], helps to illustrate
the preceding result. Consider the system:

xt+1 = Axt +B1u1
t +B2u2

t + w(t) , t ≥ 0,
yit = Cixt + vi(t) , i = 1, 2 (3)

with

A = diag(2, 2),

B1 = [0 1]T , C1 = [1 1],

B2 = [1 0]T , C2 = [1 − 1].

Here, neither of the stations can recover the modes of
the system independently; however the system is decentrally
stabilizable (even by linear policies). If the system were
centralized, the average rate needed would be2 bits. In the
decentralized case, however, a lower bound on the average
sum rate under the information structure for the controllers
and the plant is3 bits.

Proof: The rate of the signals from the controller to
the plant is lower bounded by the entropy of the control
variables, which leads to the mutual information being a
lower bound on the rate. LetR1 denote the average sum rate
needed to stabilizex1. Likewise letR2 denote the average
sum rate to stabilizex2. LikewiseR3 andR4 can be defined,
with an additional difference; for the latter two sets of modes,
it might be that signaling can be required, hence the rate
will have contributions from both of the controllers. It now
follows from the standard information theoretic arguments
that the average rate of transmission from controller 1 to
stabilizex1 satisfies:

R1 ≥ lim inf
t→∞

1
t
I(x1

0;u1
[0,t]), (4)

whereu1
[0,t] = {u1

0, u
1
2, . . . , u

1
t}. Likewiseu2, u3, u4 can be

studied, withukt denoting the control applied to act on states
xk at time t. Let Λ1 be the controllable canonical output
matrix for modes in the space spanned byx1. We have that
x1
t can be written as

Λt1x
1
0 + f(x2

0, x
3
0, x

4
0) + g(w[0,t−1]) +

t−1∑
j=1

Λt−j1 B1u1
t ,

where g(w[0,t−1]) is the upper dim(x1) rows of∑t−1
j=1 Ã

t−jPwt, where Ã is the transformed matrix,
which is upper block triangular. Likewisef(x2

0, x
3
0, x

4
0) can



be computed using the upper-block-triangular form ofÃ.
We have

h(x1
t )

= h(Λt1x
1
0 + f(x2

0, x
3
0, x

4
0) + g(w[0,t−1])

+
t−1∑
j=1

Λt−j1 B1u1
t ) (5)

≥ h(Λt1x
1
0 + f(x2

0, x
3
0, x

4
0) + g(w[0,t−1])

+
∑
j

Λt−j1 B1u1
t |w[0,t−1]) (6)

= h(Λt1x
1
0 + f(x2

0, x
3
0, x

4
0) +

∑
j

Λt−j1 B1u1
t ) (7)

≥ h(Λt1x
1
0 + f(., ., .) +

∑
j

Λt−j1 B1u1
t |x2

0, x
3
0, x

4
0)(8)

= h(Λt1x
1
0 +

∑
j

Λt−j1 B1u1
t ) (9)

≥ h(Λt1x
1
0 +

∑
j

Λt−j1 B1u1
t |
∑
j

Λt−j1 B1u1
t ) (10)

= h(Λt1x
i
0|
∑
j

Λt−j1 B1u1
t ) (11)

≥ t log2(|Λ1|) + h(x1
0|
∑
j

Λt−j1 B1u1
t ) (12)

≥ t log2(|Λ1|) + h(x1
0|u1

[0,t]). (13)

(5) follows from the evolution of the states, and (6) from the
fact that conditioning does not increase the entropy. Equation
(7) follows from the independence of the disturbance, (8)
from conditioning, and (9) from the fact that the intersection
of the subspaces is zero. (10) follows from the properties
of conditioning, (11) from shifting of random variables, and
(12) and (13) by the properties of conditional entropy.

It follows by rearranging terms, that

h(x1
0)− h(x1

0|u1
[0,t]) ≥ h(x1

0) + t log2(|Λ1|)− h(x1
t ) .

Now, for a sequence of scalar continuous random
variables {vt, t = 1, 2, . . . } having a finite variance,
limt→∞E[v2

t ] < ∞, the (differential) entropy has the
property thatlim supt→∞ h(vt) <∞. Hence,

lim inf
t→∞

1
t
I(x1

0;u1
[0,t]) ≥ log2(|Λ1|).

It should be observed thatu2
[0,t] is a causal function of the

information available,y2
[0,t], and thus by the data processing

inequality, it follows that

I(x1
0;u2

[0,t]) ≤ I(x1
0; y1

[0,t], y
2
[0,t]),

and

lim inf
t→∞

1
t
I(x1

0; y1
[0,t], y

2
[0,t]) ≥ log2(|Λ1|)

Hence, the end to end rate satisfies

R1 ≥ lim inf
t→∞

1
t
I(x1

0; y1
[0,t], y

2
[0,t])

Further, it follows thatlim supt→∞
1
t I(x1

0; y1
[0,t]) is finite and

the information that needs to be signaled from the second
controller to the first one satisfies

lim inf
t→∞

1
t
I(x1

0; y2
[0,t]|y

1
[0,t])

≥ log2(|Λ1|)− lim sup
t→∞

1
t
I(x1

0; y1
[0,t])

≥ log2(|Λ1|)− lim sup
t→∞

1
t
I(x1

0; y1
[0,t])

Since, lim supt→∞
1
t I(x1

0; y1
[0,t])) = log2(|Λ|1), the

amount that needs to be signaled is zero. A similar discussion
follows for the modesx2. Next, we work on the lower block
of the controllable canonical form. Here, we work withx2

and carry out the analysis above. We are then left withx3

and x4. Now, we apply another canonical transformation
such that onlyx3 is controllable. Forx3 we have, with
x3 ⊂ O1 ∪O2, the following.

lim inf
t→∞

1
t
I(x3

0; y2
[0,t]|y

1
[0,t], x

4
0)

≥ log2(|Λ3|)− lim sup
t→∞

1
t
I(x3

0; y1
[0,t]|x

4
0)

This is the amount of information that needs to be
signaled, henceR3 will consist of two terms; the control
signal sent from station 1, as well as the signaling outputs
from station 2. Finally, we consider{x4}. For this, one
again applies a canonical transformation such that only these
modes are controllable. Using the observation that the initial
values of the mode states are independent, the result follows.
The order of{x3} and {x4}, and the modes belonging to
these, can be adjusted so as to pick the lower value. �

Remark 1: In the special case where the modes are
completely decoupled, the result reduces to the centralized
case. In case modes are coupled, the controllable subspaces
can be partitioned, and an analysis on each of the subspaces
can be carried over. The above result is tight when the
channels are noiseless [1]. �

Remark 2: The analysis is applicable to more than two
controllers. In this case, consider the following setup: If
there is only one controller, controller k, with a controllable
(A,Bk) pair, and if all other controllers have null control-
lable subspaces, then the problem reduces to a version of
the multi-sensor problem, with the additional control signal
to be sent to the plant from controller k. �

III. D ECENTRALIZED STABILIZABILITY IN THE

PRESENCE OFNOISE AND SIGNALING OVER A NOISY

PLANT

We first have the following negative result.
Theorem 3.1: When the system noise (w(t)) and the

observation noise (v(t)) are present in the system, the lower
bound in Theorem 2.1 is not achievable.

Toward the proof, we first present some preliminary re-
sults. Consider the configuration of Figure 2.
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Fig. 2: Cascade of Channels.

We have that

I(s; y)− I(s; z) = −h(s|y) + h(s|z)
= −h(s|y, z) + h(s|z) = I(s; y|z)
> 0 (14)

Hence, it follows that the end to end mutual information is
less than the mutual information in the first channel, unless

x↔ z ↔ y

forms a Markov chain, implying that there is no information
loss with regard to the message at the second channel. In
the following we present some insight into this result. First
consider the following lemma [7]:

Lemma 3.1: Consider the scheme in Figure 2, with
E[u2] ≤ P andv, w Gaussian. It follows that

E[(s− E[s|z])2] = E[(s− E[s|y])2]
+E[(E[s|y]− E[E[s|y]|z])2], (15)

and each of these terms can be minimized by using linear
policies.

Lemma 3.2: Consider the scheme in Figure 2, with
E[u2] ≤ P and v, w Gaussian. ThenI(s; z) is maximized
with u = αy such thatE[u2] = P .

Theorem 3.2: The mutual information betweens and z
satisfies:

I(s; z) < min(I(s; y), I(y; z)) < min(C1, C2)
Hence, there is a leak in the end to end information

transmission when the channels are noisy. As such, there is a
loss in the information transfer due to the noisy nature of the
system. This is despite the fact that the information theoretic
capacity of a block-code is still equal toC = min(C1, C2).

Signaling through the plant is equivalent to coding over
an induced noisy channel. To develop some insight into the
problem of signaling in noisy systems, let us consider the
two controller system with

A =
[
a1 0
0 a2

]
C1 =

[
1 0

]
C2 =

[
0 1

]
,

B1 =
[
0 1

]T
B2 =

[
1 0

]T
.

Furthermore, suppose the control signals are power con-
strained such thatE[(ui(t))2] ≤ Pi, i = 1, 2 for all time
stages.

Theorem 3.3: Let σ2
xi(t) = E[x2

i (t)], for i = 1, 2. For
the stability of the system described, the set ofP1, P2 values

such that the joint non-linear equations below converge to a
finite value is stabilizing.

σ2
x1

(t+ 1) =
a4

1σ
2
x1

(t)
(1 + P1

(σ2
w2

+σ2
v2

+a2
2

σ2
x2

(t)σ2
v2

σ2
x2

(t)+σ2
v2

)

)

+(1 + a2
1)σ2

w1
,

σ2
x2

(t+ 1) =
a4

2σ
2
x2

(t)
(1 + P2

(σ2
w1

+σ2
v1

+a2
1

σ2
x1

(t)σ2
v1

σ2
x1

(t)+σ2
v1

)

)

+(1 + a2
2)σ2

w2

Proof: Suppose the controllers signal their associated
observed states, and apply their controls every other time
stage. We consider the case where both signaling and state
estimation processes are performed in a memoryless fashion,
and also that the plant undoes the effects of signaling at every
period of signaling.

Hence, the control acts on a lifted state, whereas each
station keeps observing the channel state value with each
time stage. We have the observation at station 1 as

y1(t+ 1) = a1x1(t) + w(t) + u2(t) + v1(t+ 1),

wherex1(t) is unavailable at the station 1. LetIi(t) denote
the information available at station i. Hence,

ȳ1(t+ 1) = a1(x1(t)− E[x1(t)|I1(t)])
+w(t) + v1(t+ 1) + u2(t), (17)

whereȳ1(t+ 1) = y1(t+ 1)− aE[x1(t)|I1(t)]. In this case,
the transmitter sends a message over an induced channel with
disturbance valuesa1(x1(t)−E[x1(t)|I1(t)])+w(t)+v1(t+
1), which is a Gaussian random variable if linear policies are
adopted.

The capacity of this channel,C1, is

1
2

log2(1 +
P1

(σ2
w2

+ σ2
v2

+ a2
1E[(x2(t)− E[x2(t)|I2(t)])2]

),

and likewise,C2 can be expressed as

1
2

log2(1 +
P2

(σ2
w1

+ σ2
v1

+ a2
1E[(x1(t)− E[x1(t)|I1(t)])2]

).

It should be observed that, the induced channel has a state
estimation error component. This is in contrast with the
analysis for the case with noiseless observations. We have,
by the optimal memoryless mean square estimates:

E[(x1(t)− E[x1(t)|I2(t)])2] = E[x1(t)2]e−2C1

E[(x2(t)− E[x2(t)|I1(t)])2] = E[x2(t)2]e−2C2

But, the steady state itself is a function of the control applied.
In this case, the steady state value satisfiesx1(t + 2) =
a2

1x1(t) + u2(t) + a1w(t) +w(t+ 1), and since the control
is applied in every two time stages, it follows that

x1(t+ 2) = (a1)2(x1(t)− E[x1(t)|I2(t)]) + a1w(t)
+w(t+ 1)



and

E[(x1(t+ 1))2] = a2
1E[(x1(t)− E[x1(t)|I2(t)])2]

+(1 + a2
1)σ2

w1
(18)

Hence, we have a non-linear dynamical system for
E[(xi(t))2]:

E[x2
1(t+ 1)] = a4

1E[x2
1(t)]e−2C1 + (1 + a2

1)σ2
w1

E[x2
2(t+ 1)] = a4

2E[x2
2(t)]e−2C2 + (1 + a2

2)σ2
w2

Then,

E[(x1(t+ 1))2]

=
a4

1E[x1(t)2]
(1 + P1

(σ2
w2

+σ2
v2

+a2
1E[(x2(t)−E[x2(t)|I2(t)])2]

)

+ (1 + a2
1)σ2

w1
,

E[(x2(t+ 1))2]

=
a4

2E[x2(t)2]
(1 + P2

(σ2
w1

+σ2
v1

+a2
1E[(x1(t)−E[x1(t)|I1(t)])2]

)

+ (1 + a2
2)σ2

w2
(19)

Finally, observe that

E[x2(t)|x2(t) + v2(t)] =
E[x2

2(t)]
E[x2

2(t)] + σ2
v2

(x2(t) + v2(t))

It follows that

E[(x2(t)− E[x2(t)|x2(t) + v2(t)])2]
= E[x2

2(t)]− (E[x2
2(t)])2/(E[x2

2(t)] + σ2
v2

)

=
E[x2

2(t)]σ2
v2

E[x2
2(t)] + σ2

v2

(20)

This concludes the proof. �
Hence, we observe that the signaling process over a plant

with unknown state values can be modeled as coding over
an unknown channel, with the further property that the side
information available at the encoder and the decoder are
unequal, since the encoder and the decoder might have
different information with regard to the state of the plant.
As we observed, in this case the new channel is a noisy
channel, and as such the lower bound obtained in Theorem
2.1 is no longer tight.

IV. CONCLUDING REMARKS

In this paper, we studied the problem of signaling and
control for decentralized stabilizability. We obtained a lower
bound building on the analysis in [1], which is not tight when
noise is present. We observed that when noise is present
the signaling problem becomes a complicated coding process
over a channel with unequal channel side information at the
transmitter and the receiver. The results here are applicable
to more than two controllers following the discussion in [1].
In this case, however, the signaling problem becomes more
tedious to investigate. One conclusion is that the analysis
performed for noiseless systems suggests a time-varying,
switching or a periodic control scheme, which can also be
applicable to noisy systems. One research direction would
be to extend the results of [22].
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