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1 Introduction

The principal goal of data compression (also known as source coding) is
to replace data by a compact representation in such a manner that from
this representation the original data can be reconstructed either perfectly,
or with high enough accuracy. Generally, the representation is given in the
form of a sequence of binary digits (bits) that can be used for efficient digital
transmission or storage.

Certain types of data, such as general purpose data files on a computer,
require perfect reconstruction. In this case the compression procedure is
called lossless, and the goal is to find a representation that allows perfect
reconstruction using the fewest possible bits. Other types of data, such as
speech, audio, images, and video signals, do not require (or do not even
admit) perfect reconstruction. In this case, the goal is to find an efficient
digital representation from which the original data can be reconstructed with
a prescribed level of accuracy, as measured by a fidelity criterion between
the original and reconstructed data. Such a compression procedure is called
lossy. In these notes, we will focus on lossy data compression.

In our model, the data to be compressed is a sequence of d-dimensional
random vectors Z1, Z2, . . ., such that all the Zi have the same distribution.
Such a data sequence is obtained, for example, by forming non-overlapping
blocks of length d from a real-valued stationary process. To compress the
data, each Zi is mapped into a binary string bi. Thus Z1, Z2, . . . is repre-
sented by the sequence of binary strings b1, b2, . . .. Typically, Zi can take a
continuum of values, while bi is always discrete, and so this representation
is lossy (not invertible). The data is reconstructed by mapping each bi into
another d-dimensional vector Ẑi, called the reproduction of Zi.

The compactness of the representation is measured by its rate, defined
as the average (expected) number of binary digits needed to obtain Ẑi, i.e.,
the average length of bi. Note that this number is the same for all i since
the Zi have the same distribution. If bi has fixed length, the compression
procedure is called fixed-rate vector quantization. If the length of bi is not
fixed (i.e., it depends on the value of Zi), we talk about variable-rate vector
quantization. The composition of mappings Zi → bi → Ẑi is called a fixed-
rate vector quantizer in the first case, and a variable-rate vector quantizer
in the second case.

Since Zi 6= Ẑi in general, we need a way to measure how well Ẑi approx-
imates Zi. For this reason, we are given a nonnegative function d(·, ·) of
two vector variables, called a distortion measure, and we use the quantity
d(Zi, Ẑi) to measure the reconstruction error in representing Zi by Ẑi. In
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these notes, we will use the popular mean squared error given by the squared
Euclidean distance between Zi and Ẑi. The distortion of the scheme is
characterized by a single number, the average (expected) value of d(Zi, Ẑi).
Again, this quantity is the same for all i since the Zi have the same distri-
bution.

The fact that the rate and distortion do not depend on the particular
index i allows us to focus on the problem of quantizing (compressing) a
generic random vector X, called the source, which has the common distri-
bution of the Zi. The goal is to make the distortion in quantizing X as small
as possible, while keeping the rate at a given threshold. Quantizers which
are optimal in the sense of achieving minimum distortion under a rate con-
straint depend on the distribution of the source. If the source distribution
is known, then the problem of optimal quantization under a rate constraint
can be posed as a (typically rather hard) optimization problem.

On the other hand, if the source distribution is unknown (as is often
the case in practice), then an approximation to an optimal quantizer must
be constructed (learned) on the basis of a finite number of training samples
drawn from the source distribution. Questions of a different flavor arise in
this situation. For example, a fundamental problem is whether an optimal
quantizer can be learned as the number of training samples increases without
bound. We would also like to know how many training samples are needed
and what methods to use to construct a quantizer whose performance is
close to the optimum. Our main goal in these notes is to demonstrate how
tools and techniques from nonparametric statistics and statistical learning
theory can be used to tackle these and related problems concerning learning
vector quantizers from empirical data.

Notes
The model of data compression we consider is not the most general

possible. For more general models and the information-theoretic framework
for lossy data compression, see, e.g., Gray (1990). Fundamentals of vector
quantization are given in Gersho and Gray (1992). A very thorough review
of the history of quantization and an extensive survey of its literature can
be found in Gray and Neuhoff (1998).

2 The fixed-rate quantization problem

A fixed-rate N -point vector quantizer (N ≥ 1 is an integer) is a Borel mea-
surable mapping q : Rd → C, where the codebook C = {y1, . . . , yN} is an
ordered collection of N distinct points in R

d, called the codevectors.
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In our model, the source is an R
d-valued random vector X. In order

to compress the source, the quantizer q represents the “input” X by the
“output” X̂ = q(X). Since q(X) can only take N distinct values, it is
possible to uniquely describe q(X) using only a finite number of bits, while
such a description is in general not possible for X. In fact, for values of N
such that log2N is an integer, exactly log2N bits are necessary and sufficient
to uniquely specify the values of q(X) in a description using binary strings
of a fixed length. In other words, for every realization of X, one needs to
transmit or store log2N bits so that the value of q(X) can be reconstructed.
For this reason, the the rate of q is defined by

R(q)
△

= log2N.

In general, it is convenient (and customary) to define the rate by log2N
even if this number is not an integer.

To measure the reconstruction error in representing X by q(X), we use
the quantity d(X, q(X)), where d(x, y) ≥ 0, x, y ∈ R

d, is a measurable
function called a distortion measure. The distortion of q in quantizing X is
the expected reconstruction error

D(µ, q)
△

= E d(X, q(X)) =

∫

Rd

d(x, q(x))µ(dx)

where µ denotes the distribution of X. For simplicity, we assume mean
squared distortion, i.e., d(x, y) = ‖x−y‖2, where ‖ · ‖ denotes the Euclidean
norm in R

d, so that

D(µ, q)
△

= E‖X − q(X)‖2.
Throughout we assume that E‖X‖2 <∞, which implies D(µ, q) <∞.

Two quantizers have the same rate if they have the same number of
codevectors. The primary goal of quantization is to find quantizers that
have minimum distortion subject to a constraint on the rate, or equiva-
lently, on the number of codevectors. Consequently, we define the optimal
performance over N -point quantizers by

D∗
N (µ)

△

= inf
q∈QN

D(µ, q)

where QN denotes the set of all N -point quantizers. A quantizer q∗ ∈ QN

is called optimal if D(µ, q∗) = D∗
N (µ).

It is useful to note that any N -point quantizer q is completely character-
ized by its codebook {yi}Ni=1 and the cells Si = {x : q(x) = yi}, i = 1, . . . , N ,
via the rule

q(x) = yi if and only if x ∈ Si.
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Note that {S1, . . . , SN} is a partition of Rd. In what follows we will often
define quantizers by specifying their codebooks and partition cells.

The next lemma shows how to choose the partition cells optimally for a
fixed codebook, and how to choose the codebook optimally for fixed partition
cells.

Lemma 1

(Nearest Neighbor Condition) Let q be an arbitrary N -point quantizer
with codebook C = {yi}Ni=1, and let q′ be an N -point quantizer which
has the same codebook and is defined by

q′(x) = argmin
yi∈C

‖x− yi‖2 (1)

where ties are broken arbitrarily. Then

D(µ, q′) ≤ D(µ, q).

(Centroid Condition) Let q be an arbitrary quantizer with partition cells
{Si}Ni=1. If q

′ is defined to have the same partition cells and codevectors
given by

y′i = argmin
y∈Rd

E[‖X − y‖2|X ∈ Si] = E[X|X ∈ Si], i = 1, . . . , N

then
D(µ, q′) ≤ D(µ, q).

Proof. To prove the nearest neighbor condition, note that (1) is equivalent
to

‖x− q′(x)‖2 = min
1≤i≤N

‖x− yi‖2

i.e, q(x) is the nearest neighbor of x among {yi}Ni=1. Thus for any q with
codebook C and arbitrary partition cells {Si}Ni=1,

E‖X − q(X)‖2 =
N∑

j=1

∫

Sj

‖x− yj‖2 µ(dx)

≥
N∑

j=1

∫

Sj

min
1≤i≤N

‖x− yi‖2 µ(dx)

=

∫

Rd

min
1≤i≤N

‖x− yi‖2 µ(dx)

= E‖X − q′(X)‖2.
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To prove the centroid condition, note that for any measurable S ⊂ R
d

such that µ(S) > 0, if y′ = E[X|X ∈ S] and y ∈ R
d is arbitrary, then

E[‖X − y‖2|X ∈ S] = E[‖X − y′‖2|X ∈ S] + ‖y − y′‖2

since E[(y − y′) · (X − y′)|X ∈ S] = 0, where a · b denotes the usual inner
product of a, b ∈ R

d. (This optimizing y′ is often called the centroid of S′.)
Hence y′ is the unique point satisfying

E[‖X − y′‖2|X ∈ S] = inf
y∈Rd

E[‖X − y‖2|X ∈ S].

Thus if q has partition cells {Si}Ni=1 and arbitrary codebook {yi}Ni=1, then

E‖X − q(X)‖2 =

N∑

i=1

E[‖X − yi‖2|X ∈ Si]µ(Si)

≥
N∑

i=1

E[‖X − y′i‖2|X ∈ Si]µ(Si)

= E‖X − q′(X)‖2.

�

A quantizer q with codebook C = {yi}Ni=1 is called a nearest neighbor
quantizer if for all x ∈ R

d,

‖x− q(x)‖2 = min
yi∈C

‖x− yi‖2.

The nearest neighbor condition of Lemma 1 implies that it suffices to con-
sider nearest neighbor quantizers when searching for an optimal quantizer.
Equivalently,

D∗
N (µ) = inf

C:|C|=N
Emin

yi∈C
‖X − yi‖2. (2)

Note that (2) clearly implies

D∗
N (µ) ≥ D∗

N+1(µ) (3)

for any N ≥ 1.
Although the partition cells of a nearest neighbor quantizer are not

uniquely determined by the codebook C = {yi}Ni=1, one can make the defi-
nition unique via a fixed tie-breaking rule. For example, a tie-breaking rule
that favors smaller indices gives

S1 = {x : ‖x− y1‖ ≤ ‖x− yj‖, j = 1, . . . , N}
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and for i = 2, . . . , N ,

Si = {x : ‖x− yi‖ ≤ ‖x− yj‖, j = 1, . . . , N} \
i−1⋃

k=1

Sk.

Any {Si}Ni=1 obtained as the partition associated with a nearest neighbor
quantizer with codebook C is called a Voronoi (or nearest neighbor) partition
of Rd with respect to C.

In view of (2), it is not hard to show that an optimal N -point quantizer
always exists.

Theorem 1 There exists a nearest neighbor quantizer q∗ ∈ QN such that
D(µ, q∗) = D∗

N (µ).

Proof. For a positive integer m and (y1, . . . , ym) ∈ (Rd)m define

gm(y1, . . . , ym)
△

=

∫

Rd

min
1≤i≤m

‖x− yi‖2 µ(dx).

Note that gm is the distortion of a nearest neighbor quantizer with codevec-
tors y1, . . . , ym (this quantizer may have less than m codevectors since the
yi are not necessarily distinct). Hence by (3),

inf
(y1,...,ym)∈(Rd)m

gm(y1, . . . , ym) = D∗
m(µ). (4)

We can assume that N ≥ 2 since for N = 1 the claim of the theorem
follows from the centroid condition of Lemma 1. Also, to exclude the trivial
case when µ is concentrated on a single point, we assume that the support
of µ contains at least two distinct points. Then it is easy to show that

D∗
2(µ) < D∗

1(µ)

(to see this, note that by the proof of the centroid condition, if q is an
arbitrary two-point nearest-neighbor quantizer with cells S1, S2 and code-
points y1, y2 such that µ(Si) > 0 and yi = E[X|X ∈ Si] for i = 1, 2, then
D(µ, q) < E‖X−EX‖2 = D∗

1(µ)). Hence there is a unique integer 2 ≤ k ≤ N
such that

D∗
N (µ) = · · · = D∗

k(µ) < D∗
k−1(µ). (5)

(In fact, one can prove that if the support of µ contains at least N points,
then D∗

N (µ) < D∗
N−1(µ), and so k = N).
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Let Br
△

= {x : ‖x‖ ≤ r} denote the closed ball of radius r > 0 centered
at the origin. Fix ǫ > 0 such that

ǫ <
1

2

(
D∗

k−1(µ)−D∗
k(µ)

)
(6)

and pick 0 < r < R such that

(R− r)2µ(Br) > D∗
k(µ) + ǫ, 4

∫

Bc
2R

‖x‖2 µ(dx) < ǫ. (7)

Choose (y1, . . . , yk) satisfying gk(y1, . . . , yk) < D∗
k(µ)+ ǫ, and suppose with-

out loss of generality that the codevectors are indexed so that ‖y1‖ ≤
· · · ≤ ‖yk‖. Then ‖y1‖ ≤ R, since otherwise, by the triangle inequality,
min
1≤i≤k

‖x− yi‖2 ≥ (R− r)2 for all x ∈ Br, and so

D∗
k(µ) + ǫ >

∫

Br

min
1≤i≤k

‖x− yi‖2 µ(dx) ≥ (R− r)2µ(Br)

contradicting (7). We will show that ‖yj‖ ≤ 5R for all j. Assume to the
contrary that ‖yk‖ > 5R. Then by the triangle inequality, for all x ∈ R

d,

‖x− y1‖ ≤ ‖x− yk‖I{x∈B2R} + 2‖x‖I{x∈Bc
2R} (8)

where IA denotes the indicator of the set A. Then letting {Si}ki=1 be a
Voronoi partition with respect to {yi}ki=1, we obtain

gk−1(y1, . . . , yk−1) =
k∑

j=1

∫

Sj

min
1≤i≤k−1

‖x− yi‖2 µ(dx)

≤
k−1∑

j=1

∫

Sj

‖x− yj‖2 µ(dx) +
∫

Sk

‖x− y1‖2 µ(dx)

≤
k∑

j=1

∫

Sj

‖x− yj‖2 µ(dx) + 4

∫

Bc
2R

‖x‖2 µ(dx)

≤ gk(y1, . . . , yk) + ǫ ≤ D∗
k(µ) + 2ǫ < D∗

k−1(µ)

where the second inequality follows from (8), the third from (7), and the
last one from (6). This contradicts (4), so we obtain that gk(y1, . . . , yk) <
D∗

k(µ) + ǫ implies (y1, . . . , yk) ∈ (B5R)
k. Therefore

D∗
k(µ) = inf

(y1,...,yk)∈(B5R)k
gk(y1, . . . , yk).
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Since (B5R)
k ⊂ (Rd)k is compact and gk is continuous (as can be seen by an

application of the dominated convergence theorem), there exists (y∗1, . . . , y
∗
k)

in (B5R)
k with gk(y

∗
1, . . . , y

∗
k) = D∗

k(µ). Thus there is a nearest neighbor
quantizer with at most k codevectors achieving D∗

k(µ). Since k ≤ N and
D∗

k(µ) = D∗
N (µ), this implies that there must exist an N -point nearest

neighbor quantizer q∗ that achieves D∗
N (µ). �

Remark Lemma 1 gives rise to an iterative algorithm for designing N -point
quantizers. Start with an arbitrary N -point quantizer q0 with codebook
C0 and partition S0. In the mth iteration (m = 1, 2, . . .), first let Sm =

{S(m)
i }Ni=1 be the Voronoi partition with respect to Cm−1, and then set Cm =

{y(m)
i }Ni=1, where y

(m)
i = E[X|X ∈ S

(m)
i ] for i = 1, . . . , N . If qm denotes the

quantizer defined by Cm and Sm, and we set Dm = D(µ, qm), then Lemma 1
implies

Dm ≤ Dm−1

and so limm→∞(Dm−1 −Dm) = 0. The algorithm stops (after a finite num-
ber of iterations) when the drop in distortion falls below a given threshold.
The distortion Dm is not guaranteed to converge to the minimum distor-
tion D∗

N (µ), but quantizers obtained by this method or its variants yield
sufficiently low distortion for practical applications.

Unless the dimension d is very small, computing Dm and the conditional

expectations E[X|X ∈ S
(m)
i ], i = 1, . . . , N , is hard for a general source

distribution (given, e.g., by its probability density function). In practice,
the algorithm is usually run with µ replaced by the empirical distribution of
a finite number of samples drawn according to µ. As explained at the end of
the next section, the implementation becomes straightforward in this case.

Notes
The optimality conditions of Lemma 1 were first derived by Lloyd (1957)

(for the scalar d = 1 case) and by Steinhaus (1956) (who considered a prob-
lem equivalent to three-dimensional fixed-rate quantization). Theorem 1 is
due to Pollard (1982a); the existence of optimal quantizers for more general
distortion measures was shown, for example, by Pollard (1981), Abaya and
Wise (1982), and Sabin (1984). Except for trivial cases, optimal quantizers
and the minimum distortion D∗

N (µ) are very hard to determine analytically,
but approximations that become tight as N → ∞ can be derived for a large
class of source distributions. We refer to Gray and Neuhoff (1998) and Graf
and Luschgy (2000) for such asymptotic (high-rate) results. The design al-
gorithm sketched above is basically also due to Lloyd (1957) and Steinhaus
(1956). An extension to the vector case and to more general distortion mea-
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sures was given by Linde, Buzo, and Gray (1980), and the algorithm is often
referred to as “the LBG algorithm.” For more details and other methods of
vector quantizer design, see Gersho and Gray (1992).

3 Consistency of empirical design

In most situations, the distribution µ of the source X to be quantized is
unknown, and the only available information about µ is in the form of train-
ing data, a finite sequence of vectors drawn according to µ. More formally,

the training data Xn
1

△

= X1, . . . , Xn consists of n independent and identi-
cally distributed (i.i.d.) copies of X. It is assumed that Xn

1 and X are also
independent. The training data is used to construct an N -point quantizer

qn(·) = qn(·, X1, . . . , Xn).

Such a qn is called an empirically designed quantizer. The goal is to “learn”
the optimal quantizer from the data, i.e., to produce empirically designed
quantizers with performance approaching (as n gets large) the performance
of a quantizer optimal for X. We assume, as before, that E‖X‖2 <∞.

We call the quantity

D(µ, qn) = E
[
‖X − qn(X)‖2 |Xn

1

]

the test distortion of qn. Thus D(µ, qn) measures the distortion resulting
when qn is applied toX; it is the “true” distortion of the empirically designed
quantizer. Note that D(µ, qn) is a random variable since qn depends on Xn

1 .
Also of interest is the training distortion (or empirical distortion) of qn,

defined as the average distortion of qn on the training data:

1

n

n∑

k=1

‖Xk − qn(Xk)‖2.

The empirical distribution µn of the training data is defined by

µn(A) =
1

n

n∑

k=1

I{Xk∈A}

for every Borel measurable A ⊂ R
d, i.e, µn places weight 1/n at each point

Xk, k = 1, . . . , n. Thus the training distortion becomes

1

n

n∑

k=1

‖Xk − qn(Xk)‖2 = D(µn, qn).
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Intuitively, if qn performs well on the training set, it should also have
good performance on the source, assuming the training set is sufficiently
large. We define an empirically optimal quantizer as an N -point quantizer
q∗n that minimizes the training distortion:

q∗n
△

= argmin
q∈QN

1

n

n∑

k=1

‖Xk − q(Xk)‖2.

In other words, q∗n ∈ QN satisfies

D(µn, q
∗
n) = inf

q∈QN

D(µn, q) = D∗
N (µn).

Note that by Theorem 1, q∗n always exists. In fact, since µn is supported
on at most n points, the existence of q∗n is easy to show without resorting
to Theorem 1. Note also that the definition of q∗n outside the support of µn
does not affect the training distortion, so q∗n is not uniquely defined even if
its codebook happens to be unique. We will resolve this problem by always
requiring (as we may by Lemma 1) that q∗n be a nearest neighbor quantizer.

Our goal is to show that the design based on empirical distortion min-
imization is consistent in the following sense: As the size of the training
data grows, the sequence of test distortions converges almost surely (i.e., for
almost every realization of the training sequence) to the minimum distor-
tion achieved by an optimal quantizer. If this is the case, then for n large
enough, q∗n can effectively replace an optimal quantizer q∗ in quantizing X.

Theorem 2 (Consistency of empirical design) For any N ≥ 1 the
sequence of empirically optimal N -point nearest neighbor quantizers q∗n, n =
1, 2, . . ., satisfies

lim
n→∞

D(µ, q∗n) = D∗
N (µ) a.s.

To prove the theorem we need some intermediate results. The basic idea
is that for large n the empirical distribution µn is a good estimate of µ, so
the optimal quantizer for µn should provide a good approximation to the
optimal quantizer for µ. In order to formalize this idea, we need a measure
of closeness for probability distributions that is appropriate in quantization
arguments.

Let µ and ν be probability distributions on R
d with finite second moment.

The L2 Wasserstein distance between µ and ν is defined by

ρ(µ, ν)
△

= inf
X∼µ,Y∼ν

(E‖X − Y ‖2)1/2
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where the infimum is taken over all joint distributions of two random vectors
X and Y such that X has distribution µ, and Y has distribution ν (denoted
by X ∼ µ and Y ∼ ν, respectively). It is easy to see that ρ(µ, ν) is finite; in
fact, ρ(µ, ν) ≤ (E‖X‖2)1/2 + (E‖Y ‖2)1/2 by the triangle inequality for the
L2 norm.

Lemma 2 The infimum defining ρ(µ, ν) is a minimum. Moreover, ρ(µ, ν)
is a metric on the space of probability distributions on R

d with finite second
moment.

Sketch of proof. Let P(µ, ν) denote the family of probability distribu-
tions on R

d × R
d with marginals µ and ν. Then

ρ(µ, ν) = inf
P∈P(µ,ν)

(∫
‖x− y‖2 P (dx, dy)

)1/2

.

First we show that the infimum is in fact a minimum. Fix ǫ > 0 and pick
a closed ball B ⊂ R

d with large enough radius such that µ(B) ≥ 1 − ǫ and
ν(B) ≥ 1− ǫ. Then any P ∈ P(µ, ν) has P (B × B) ≥ 1− 2ǫ. Since B × B
is compact, we obtain that the set of distributions P(µ, ν) is tight (see, e.g.,
Ash (2000)). If Pk ∈ P(µ, ν), k = 1, 2, . . . , is a sequence such that

∫
‖x− y‖2 Pk(dx, dy) < ρ(µ, ν)2 +

1

k

then by Prokhorov’s theorem (see, e.g., Theorem 7.2.4 in Ash (2000)) there is
a subsequence of {Pk}, say {P ′

k}, such that, as k → ∞, P ′
k converges weakly

to some probability distribution P ′. Clearly, P ′ ∈ P(µ, ν), and it is easy to
show using a truncation argument that

∫
‖x− y‖2 P ′(dx, dy) = ρ(µ, ν)2.

To show that ρ is a metric, note that ρ(µ, ν) = ρ(ν, µ) ≥ 0, and if
ρ(µ, ν) = 0, then by the preceding argument there exist X ∼ µ and Y ∼ ν
such that E‖X − Y ‖2 = 0, implying µ = ν. Thus it only remains to verify
that ρ satisfies the triangle inequality.

Let µ, ν, and λ be probability distributions on R
d having finite second

moment. Assume P ∈ P(µ, ν) achieves ρ(µ, ν) and P ′ ∈ P(ν, λ) achieves
ρ(ν, λ). Construct a jointly distributed triplet (X,Y, Z) by specifying that
(X,Y ) ∼ P , (Y, Z) ∼ P ′, and that X and Z are conditionally independent
given Y (i.e., X, Y , Z form a Markov chain in this order). Since X ∼ µ and
Z ∼ λ, by the triangle inequality for the L2 norm

ρ(µ, λ) ≤ (E‖X − Z‖2)1/2
≤ (E‖X − Y ‖2)1/2 + (E‖Y − Z‖2)1/2
= ρ(µ, ν) + ρ(ν, λ).
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The next lemma justifies the choice of ρ by showing that if two dis-
tributions are close in ρ metric, then any nearest neighbor quantizer will
quantize these distributions with similar distortion. This fact also implies
the stability of optimal quantizer performance with respect to the ρ metric.

Lemma 3 If q is a nearest neighbor quantizer, then

|D(µ, q)1/2 −D(ν, q)1/2| ≤ ρ(µ, ν).

Consequently,
|D∗

N (µ)1/2 −D∗
N (ν)1/2| ≤ ρ(µ, ν).

Proof. To prove the first bound let {y1, . . . , yN} denote the codebook of
q, and let X ∼ µ and Y ∼ ν achieve the minimum defining ρ(µ, ν). Then

D(µ, q)1/2 =
{
E min

1≤i≤N
‖X − yi‖2

}1/2

=
{
E( min

1≤i≤N
‖X − yi‖)2

}1/2

≤
{
E
(
min

1≤i≤N
(‖X − Y ‖+ ‖Y − yi‖)

)2}1/2

=
{
E(‖X − Y ‖+ min

1≤i≤N
‖Y − yi‖)2

}1/2

≤
{
E‖X − Y ‖2

}1/2
+
{
E min

1≤i≤N
‖Y − yi‖2

}1/2

= ρ(µ, ν) +D(ν, q)1/2.

The inequality D(ν, q)1/2 −D(µ, q)1/2 ≤ ρ(µ, ν) is proved similarly.
To prove the second bound, assume q∗ is an optimal N -point (nearest

neighbor) quantizer for ν. Then

D∗
N (µ)1/2 −D∗

N (ν)1/2 = D∗
N (µ)1/2 −D(ν, q∗)1/2

≤ D(µ, q∗)1/2 −D(ν, q∗)1/2

≤ ρ(µ, ν)

by the first bound of the lemma. The inequality D∗
N (ν)1/2 − D∗

N (µ)1/2 ≤
ρ(µ, ν) is proved in a similar fashion by considering an N -point optimal
quantizer for µ. �

The following corollary relates the test distortion of the empirically op-
timal quantizer to the distortion of the optimal quantizer in terms of the ρ
distance between the the empirical distribution and the true source distri-
bution.
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Corollary 1 The test distortion of the empirically optimal N -point quan-
tizer q∗n is upper bounded as

D(µ, q∗n)
1/2 −D∗

N (µ)1/2 ≤ 2ρ(µ, µn).

Proof. Let q∗ be an optimal N -point (nearest neighbor) quantizer for µ.
Recall that we specified q∗n to be a nearest neighbor quantizer. Then

D(µ, q∗n)
1/2 −D∗

N (µ)1/2

= D(µ, q∗n)
1/2 −D(µ, q∗)1/2

= D(µ, q∗n)
1/2 −D(µn, q

∗
n)

1/2 +D(µn, q
∗
n)

1/2 −D(µ, q∗)1/2

≤ D(µ, q∗n)
1/2 −D(µn, q

∗
n)

1/2 +D(µn, q
∗)1/2 −D(µ, q∗)1/2

≤ 2ρ(µ, µn)

where the last inequality follows from Lemma 3. �

The consistency theorem is a consequence of Corollary 1 and the follow-
ing lemma.

Lemma 4 Given ν and a sequence {νn}, limn→∞ ρ(ν, νn) = 0 if and only
if νn → ν weakly and

∫
‖x‖2 νn(dx) →

∫
‖x‖2 ν(dx) as n→ ∞.

Proof. Suppose limn→∞ ρ(ν, νn) = 0. For each n let Y ∼ ν, Yn ∼ νn have
joint distribution such that ρ(ν, νn) = (E‖Y −Yn‖2)1/2. Then limn→∞ E‖Y −
Yn‖2 = 0, implying Yn → Y in distribution (i.e., νn → ν weakly) and
E‖Yn‖2 → E‖Y ‖2 (i.e.,

∫
‖x‖2 νn(dx) →

∫
‖x‖2 ν(dx)).

Conversely, suppose νn converges weakly to ν. Then by Skorohod’s the-
orem (see, e.g., Theorem 11.7.2 in Dudley (1989)) there exist Yn ∼ νn and
Y ∼ ν jointly distributed such that Yn → Y a.s. By the triangle inequality,
2‖Yn‖2+2‖Y ‖2−‖Yn−Y ‖2 ≥ ‖Yn‖2+‖Y ‖2−2‖Yn‖‖Y ‖ ≥ 0; hence Fatou’s
lemma implies

lim inf
n→0

E
{
2‖Yn‖2 + 2‖Y ‖2 − ‖Yn − Y ‖2

}

≥ E
{
lim inf
n→0

(
2‖Yn‖2 + 2‖Y ‖2 − ‖Yn − Y ‖2

)}

= 4E‖Y ‖2.

Thus, if E‖Yn‖2 → E‖Y ‖2, we obtain that E‖Yn − Y ‖2 → 0, implying
ρ(ν, νn) → 0. �

13



Proof of Theorem 2. Clearly, we have D(µ, q∗n) ≥ D∗
N (µ) for each n.

Thus by Corollary 1 the theorem holds if the empirical distributions converge
to the true source distribution in ρ metric almost surely, i.e., if

lim
n→∞

ρ(µ, µn) = 0 a.s. (9)

By Lemma 4 this happens if, almost surely, µn → µ weakly and
∫
‖x‖2 µn(dx) →∫

‖x‖2 µ(dx). A basic result (due to Varadayan) concerning empirical dis-
tributions is that

P{µn → µ weakly} = 1

(see, e.g., Theorem 11.4.1 in Dudley (1989)). Also, by the strong law of
large numbers

lim
n→∞

∫
‖x‖2 µn(dx) = lim

n→∞

1

n

n∑

i=1

‖Xi‖2

= E‖X‖2 =
∫

‖x‖2 µ(dx) a.s.

Thus

P

{
µn → µ weakly,

∫
‖x‖2 µn(dx) →

∫
‖x‖2 µ(dx)

}
= 1

completing the proof. �

Remarks (i) The consistency theorem says that when trained on a long
enough training sequence, empirically optimal quantizers perform almost as
well as optimal ones. In a similar manner, we can also show that the train-
ing distortion of the empirically optimal quantizer is a strongly consistent
estimate of the optimal distortion. Indeed, applying the second bound of
Lemma 3 with ν = µn,

|D(µn, q
∗
n)

1/2 −D∗
N (µ)1/2| = |D∗

N (µn)
1/2 −D∗

N (µ)1/2| ≤ ρ(µ, µn)

and so (9) implies
lim
n→∞

D(µn, q
∗
n) = D∗

N (µ) a.s.

However, for finite n the training distortion is optimistically biased: If q∗ is
an optimal N -level quantizer for µ, then D(µn, q

∗
n) ≤ D(µn, q

∗), so

ED(µn, q
∗
n) ≤ ED(µn, q

∗)

= E

{
1

n

n∑

k=1

‖Xk − q∗(Xk)‖2
}

= D(µ, q∗) = D∗
N (µ).

14



In fact, it is not hard to see that the above inequality is always strict
unless µ is a discrete distribution concentrating on N points or less.

(ii) Finding an empirically optimal quantizer q∗n for a given realization
x1, . . . , xn of the training sequence is a computationally hard problem for
quantizer dimensions d ≥ 2. However, the iterative algorithm sketched
at the end of Section 2 can be used with the empirical distribution of the
training sequence replacing µ to find a suboptimal, but usually good enough
approximation to q∗n. The implementation of the algorithm is straightfor-
ward in this case: Let µn denote the empirical distribution of the samples
x1, . . . , xn, and let Y ∼ µn. Then the computation of the new codevectors
in the mth iteration reduces to

y
(m)
i = E[Y |Y ∈ S

(m)
i ] =

1
n

∑n
k=1 xkI{xk∈S

(m)
i }

1
n

∑n
k=1 I{xk∈S

(m)
i }

, i = 1, . . . , N.

Calculating the distortion Dm has similar complexity. Note that it is easy

to decide whether or not xk ∈ S
(m)
i since {S(m)

j }Nj=1 is a Voronoi partition

with respect to {y(m−1)
j }Nj=1. Indeed, we have xk ∈ S

(m)
i if y

(m−1)
i is the

nearest neighbor of xk in the codebook {y(m−1)
j }Nj=1.

Notes
The proof of Theorem 2 is based on Pollard (1982a); see also Pollard

(1981) and (1982b), Abaya and Wise (1984), and Graf and Luschgy (1994).
See Graf and Luschgy (2000) for more recent stability and consistency results
related to fixed-rate quantization. The L2 Wasserstein metric ρ is a special
case of the ρ̄ (“ρ-bar”) distance between random processes introduced by
Gray, Neuhoff, and Shields (1975). Lemma 3 is due to Gray and Davisson
(1975) who were the first to use the L2 Wasserstein metric in quantization
arguments. The problem of constructing an empirically optimal quantizer
is often referred to as the k-means clustering problem in the statistical liter-
ature (see MacQueen (1967)). Convergence results for the empirical version
of the iterative quantizer design algorithm (the LBG algorithm) are given
in Sabin and Gray (1986).

4 Finite sample upper bounds

We know from the consistency theorem (Theorem 2) that as the training
data size increases without bound, the performance of the empirically op-
timal quantizer will approximate the optimal performance with arbitrary
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accuracy. But large amounts of training data may be “expensive” to ac-
quire, and the computational cost of finding a quantizer that minimizes (at
least approximately) the training distortion may become prohibitive for large
training sets. It is therefore of interest to quantify how fast the test distor-
tion of the empirically optimal quantizer converges to the optimal distortion
with increasing training set size.

In this section we develop finite sample bounds on the expected test (and
training) distortion in empirical design. Such bounds are of both theoretical
and practical interest. For example, an upper bound on the test distortion,
if sufficiently tight, can give a useful bound on the minimum number of
training samples sufficient to guarantee a preassigned level of performance
for the designed quantizer.

To simplify matters, we only consider source distribution with bounded
support. For T > 0, let P(T ) denote the set of probability distributions
on R

d supported on BT , the closed ball of radius T centered at the origin.
Throughout this section we require that µ ∈ P(T ), that is,

P{‖X‖ ≤ T} = 1.

Let QN (T ) denote the collection of all nearest neighbor quantizers with
all their codevectors inside BT . We start with a basic lemma.

Lemma 5 For any µ ∈ P(T ),

D(µ, q∗n)−D∗
N (µ) ≤ 2 sup

q∈QN (T )
|D(µn, q)−D(µ, q)|.

Proof. Let q∗ be an optimal N -point nearest neighbor quantizer for µ. We
can repeat the argument in the proof of Corollary 1 without taking square
roots to obtain

D(µ, q∗n)−D∗
N (µ)

≤ D(µ, q∗n)−D(µn, q
∗
n) +D(µn, q

∗)−D(µ, q∗). (10)

Now observe that since BT is a convex set, if an arbitrary N -point quantizer
q has a codevector yi outside BT , we can replace yi by its projection y′i on BT .
The new codevector y′i is then closer to all x ∈ BT than yi, i.e., ‖x− y′i‖ <
‖x− yi‖ if ‖x‖ ≤ T , ‖yi‖ > T , and y′i = Tyi/‖yi‖. Replacing all codevectors
of q outside BT by their projections, we obtain q′ such that ‖x − q′(x)‖ ≤
‖x−q(x)‖ for all x ∈ BT . Thus for any ν ∈ P(T ), we haveD(ν, q′) ≤ D(ν, q).
Since µ ∈ P(T ), we also have µn ∈ P(T ) a.s., and it follows that both
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q∗ and q∗n can be assumed to have all their codevectors inside BT . Since
both q∗ and q∗n were assumed to be nearest neighbor quantizers, we obtain
q∗, q∗n ∈ QN (T ). This and bound (10) imply the lemma. �

The following result is the key to the finite sample bounds in this section.

Theorem 3 There is a constant C, depending only on d, N , and T , such
that for all n ≥ 1 and µ ∈ P(T ),

E

{
sup

q∈QN (T )
|D(µn, q)−D(µ, q)|

}
≤ C√

n
.

Proof. There are several (not fundamentally different) ways to prove the
bound of the theorem, resulting in somewhat different values for the con-
stant C. These methods are all based on bounds on uniform deviations
of empirical averages given in terms of combinatorial properties of certain
classes of sets or functions. The proof given below is perhaps the simplest; it
is based on a sharpened version of the basic Vapnik-Chervonenkis inequal-
ity. In what follows we will use notions and results of Vapnik-Chervonenkis
theory given in Lugosi (2001) (see also Devroye, Györfi, and Lugosi (1996),
Vapnik (1998), or Anthony and Bartlett (1999)).

For q ∈ QN (T ) define the distortion function

fq(x)
△

= ‖x− q(x)‖2.

Note that q ∈ QN (T ) implies 0 ≤ fq(x) ≤ 4T 2 for all x ∈ BT . Thus

D(µ, q) = Efq(X) =

∫ 4T 2

0
P{fq(X) > u} du

and

D(µn, q) =
1

n

n∑

k=1

fq(Xk) =

∫ 4T 2

0

1

n

n∑

k=1

I{fq(Xk)>u} du a.s.
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Hence

sup
q∈QN (T )

∣∣D(µn, q)−D(µ, q)
∣∣

= sup
q∈QN (T )

∣∣∣∣∣
1

n

n∑

k=1

fq(Xk)− Efq(X)

∣∣∣∣∣

= sup
q∈QN (T )

∣∣∣∣∣

∫ 4T 2

0

(
1

n

n∑

k=1

I{fq(Xk)>u} − P{fq(X) > u}
)
du

∣∣∣∣∣

≤ 4T 2 sup
q∈QN (T ), u>0

∣∣∣∣∣
1

n

n∑

k=1

I{fq(Xk)>u} − P{fq(X) > u}
∣∣∣∣∣

= 4T 2 sup
A∈AN

|µn(A)− µ(A)| a.s. (11)

where AN is the family of sets in R
d defined by

AN
△

=

{
{x : fq(x) > u} : q ∈ QN (T ), u > 0

}
.

Denoting by V (AN ) the vc dimension of AN , the sharpened version of the
Vapnik-Chervonenkis inequality in Section 4.5 of Lugosi (2001) gives

E

{
sup

A∈AN

|µn(A)− µ(A)|
}

≤ c

√
V (AN )

n
(12)

where c is a universal constant. Therefore

E

{
sup

q∈QN (T )

∣∣D(µn, q)−D(µ, q)
∣∣
}

≤ 4T 2c

√
V (AN )

n
. (13)

Of course, the bound is meaningful only if V (AN ) < ∞, which we show to
be the case next.

For a nearest neighbor quantizer q with codevectors {yi}Ni=1, fq(x) > u
if and only if ‖x − yi‖ >

√
u for all i = 1, . . . , N . Thus each A ∈ AN is

the intersection of the complements of N closed balls of equal radii in R
d.

Letting A denote the collection of all complements of closed balls in R
d, we

therefore have

AN ⊂ ĀN
△

= {A1 ∩ · · · ∩AN : Ai ∈ A, i = 1, . . . , N}. (14)

Note that Ā1 = A, and ĀN = {A∩B : A ∈ A, B ∈ ĀN−1} for N ≥ 2. Thus
Theorem 1.12(4) of Lugosi (2001) implies that for N ≥ 2 the mth shatter
coefficient of ĀN is upper bounded as

SĀN
(m) ≤ SA(m)SĀN−1

(m).
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By induction on N , we obtain that for all N ≥ 1 and m ≥ 1,

SĀN
(m) ≤ SA(m)N . (15)

Define B = {Bc : B ∈ A}. From Theorem 1.12(3) in Lugosi (2001), we have
SA(m) = SB(m). Hence (14) and (15) yield

SAN
(m) ≤ SĀN

(m) ≤ SB(m)N . (16)

Since B is the collection of all closed balls in R
d, we have V (B) = d + 1 by

the remark following Corollary 1.4 in Lugosi (2001). Thus a consequence of
Sauer’s lemma, Corollary 1.3 in Lugosi (2001), implies that for allm ≥ d+1,

SB(m) ≤
(
me

d+ 1

)d+1

.

This and (16) imply that for all m ≥ d+ 1,

SAN
(m) ≤

(
me

d+ 1

)N(d+1)

. (17)

An upper bound to V (AN ) can now be obtained by finding an m for which
the right side is less than 2m. It is easy to check that if d ≥ 2, then
m = 4N(d + 1) ln(N(d + 1)) satisfies this requirement. Since for d = 1 we
obviously have V (AN ) ≤ 2N , we obtain that for all N, d ≥ 1,

V (AN ) ≤ 4N(d+ 1) ln(N(d+ 1)).

This and the sharpened Vapnik-Chervonenkis inequality (13) imply the the-
orem with

C = 4T 2c
√
4N(d+ 1) ln(N(d+ 1)).

�

Combining Lemma 5 with the bound of Theorem 3, we obtain the main
result of this section, a finite sample bound on the expected test distortion
of the empirically optimal quantizer.

Theorem 4 There is a constant C1, depending only on d, N , and T , such
that for all n ≥ 1 and µ ∈ P(T ),

ED(µ, q∗n)−D∗
N (µ) ≤ C1√

n
.
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We have seen in Section 3 that the training distortion of the empirically
optimal quantizer is a strongly consistent, but optimistically biased estimate
of the optimal distortion. Theorem 3 immediately provides an upper bound
on the size of this bias.

Theorem 5 For all n ≥ 1 and µ ∈ P(T ),

D∗
N (µ)− ED(µn, q

∗
n) ≤

C√
n
.

where C is the constant in Theorem 3.

Proof. As before, let q∗ denote an optimal N -point quantizer for µ. Then
we have

D∗
N (µ)− ED(µn, q

∗
n) = E

{
D(µ, q∗)−D(µn, q

∗
n)

}

≤ E

{
D(µ, q∗n)−D(µn, q

∗
n)

}

≤ E

{
sup

q∈QN (T )
|D(µn, q)−D(µ, q)|

}

so the statement follows from Theorem 3. �

Combined with an appropriate concentration inequality (namely, the
bounded difference inequality (see Section 1.3), Theorem 3 also provides
a convergence rate in the consistency theorem for sources with bounded
support.

Theorem 6 For every µ ∈ P(T ), as n→ ∞,

D(µ, q∗n)−D∗
N (µ) = O

(√
lnn

n

)
a.s.

Proof. Let
Yn

△

= sup
q∈QN (T )

|D(µn, q)−D(µ, q)|.

From Lemma 5 and Theorem 3,

D(µ, q∗n)−D∗
N (µ) ≤ 2Yn ≤ 2(Yn − EYn) +O

(
1√
n

)
. (18)
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We can view Yn as a function Yn = g(X1, . . . , Xn) of the independent ran-
dom vectors X1, . . . , Xn. For any q ∈ QN (T ), and any x1, . . . , xn ∈ BT ,
x̂1, . . . , x̂n ∈ BT such that xk = x̂k for all k 6= i,

∣∣∣∣∣
1

n

n∑

k=1

‖xk − q(xk)‖2 −
1

n

n∑

k=1

‖x̂k − q(x̂k)‖2
∣∣∣∣∣

=
1

n

∣∣‖xi − q(xi)‖2 − ‖x̂i − q(x̂i)‖2
∣∣

≤ 1

n
4T 2.

It follows that g : (BT )
n → R satisfies the assumptions of the bounded

difference inequality (Theorem 1.8) with ci = 4T 2/n, and we obtain for all
t > 0,

P
{
Yn − EYn ≥ t

}
≤ e−nt2/(8T 4).

Choosing t =
√
ĉ lnn/n with ĉ > 8T 4, the right side is summable in n, and

so the Borel-Cantelli lemma implies Yn−EYn = O(
√
lnn/n) a.s. In view of

(18) this proves the theorem. �

Notes
Theorem 4 is due to Linder, Lugosi, and Zeger (1994). The constant can

be improved by using covering numbers and metric entropy bounds from
empirical process theory (see, e.g., Dudley (1978) or Pollard (1990)) instead
of the Vapnik-Chervonenkis inequality; see Linder (2000). Related bounds
are given in Linder, Lugosi, and Zeger (1997) for quantization of sources
corrupted by noise, and for combined quantization and transmission over
noisy channels. A generalization of Theorem 4 to dependent (mixing) train-
ing data is given in Zeevi (1998). Graf and Luschgy (1999) proved almost
sure convergence rates for the training distortion. The sample behavior of
the test distortion for a class of sources with smooth densities is given in
Chou (1994). The dependence of the test distortion on the size of the train-
ing data was empirically investigated by Cosman et al. (1991) and Cohn,
Riskin, and Ladner (1992) in the context of image coding.

5 Minimax lower bounds

We showed in the previous section that for source distributions with bounded
support, the expected test and training distortions of an empirically optimal
quantizer trained on n data samples are bounded as

D∗
N (µ) ≤ ED(µ, q∗n) ≤ D∗

N (µ) +
C1√
n

(19)
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and

D∗
N (µ)− C√

n
≤ ED(µn, q

∗
n) ≤ D∗

N (µ). (20)

In these bounds the positive constants C1 and C depend only on the dimen-
sion, the number of codevectors, and the diameter of the support.

Unfortunately, the proofs give no indication whether the O(1/
√
n) terms

can be tightened. More generally, we don’t know if there exists a method,
perhaps different from empirical error minimization, which provides an em-
pirically designed quantizer with substantially smaller test distortion.

Let us examine the simple case of quantizers with N = 1 codevector.
In this case, as the centroid condition of Lemma 1 implies, the optimal
quantizer q∗ has a unique codepoint y1 = EX and its distortion is

D∗
1(µ) = E‖X − EX‖2.

The empirically optimal 1-point quantizer q∗n is also unique with codepoint

y
(n)
1 = 1

n

∑n
j=1Xj , and its expected test distortion is easily seen to be

ED(µ, q∗n) = E

∥∥∥∥X − 1

n

n∑

k=1

Xk

∥∥∥∥
2

=

(
1 +

1

n

)
E‖X − EX‖2

= D∗
1(µ) +

D∗
1(µ)

n
.

Similarly, the expected training distortion of q∗n is

ED(µn, q
∗
n) = E

{
1

n

n∑

k=1

∥∥∥∥Xk −
1

n

n∑

j=1

Xj

∥∥∥∥
2}

=

(
1− 1

n

)
E‖X − EX‖2

= D∗
1(µ)−

D∗
1(µ)

n
.

Thus the convergence rate in both cases is O(1/n), which is substantially
faster than the O(1/

√
n) rate in (19) and (20). However, perhaps surpris-

ingly, the main results of this section show that the case N = 1 is something
of an anomaly, and for N ≥ 3 , the O(1/

√
n) convergence rate of Theorems 4

and 5 cannot be improved upon in the minimax sense.
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To formalize the problem, recall that an empirically designed N -point
quantizer is a (measurable) function qn : (Rd)n+1 → R

d such that for any
fixed x1, . . . , xn ∈ R

d, qn(·, x1, . . . , xn) is an N -point quantizer. Thus an
empirically designed quantizer consists of a family of quantizers and an
“algorithm” which chooses one of these quantizers for each value of the
training data x1, . . . , xn.

We are interested in the minimax distortion redundancy defined by

inf
qn

sup
µ∈P(T )

ED(µ, qn)−D∗
N (µ)

where the supremum is taken over all source distributions supported in BT ,
and the infimum is over all empirically designed N -point quantizers. As the
next theorem shows, for all N ≥ 3 the minimax distortion redundancy is
lower bounded by a quantity proportional to 1/

√
n. This means that no

matter what method of empirical design we use, there always exists a “bad”
source distribution in P(T ) such that the expected test distortion exceeds
the optimal distortion by constant times 1/

√
n.

Theorem 7 If N ≥ 3, then for any empirically designed N -point quantizer
qn trained on n ≥ n0 samples,

sup
µ∈P(T )

ED(µ, qn)−D∗
N (µ) ≥ C2√

n

where the threshold n0 depends only on N , and C2 is a positive constant that
depends only on d, N , and T .

The idea behind the proof is best illustrated by the special case d = 1,
N = 3. Assume that µ is concentrated on four points: −1,−1+∆, 1−∆, and
1, such that either µ(−1) = µ(−1 + ∆) = (1− δ)/4 and µ(1−∆) = µ(1) =
(1 + δ)/4, or µ(−1) = µ(−1 + ∆) = (1 + δ)/4 and µ(1 −∆) = µ(1) = (1 −
δ)/4. Then if ∆ is sufficiently small, the codepoints of the 3-point optimal
quantizer are −1 +∆/2, 1−∆, 1 in the first case, and −1,−1 +∆, 1−∆/2
in the second case. Therefore, an empirical quantizer should “learn” from
the data which of the two distributions generates the data. This leads to
a hypothesis testing problem whose error may be estimated by appropriate
inequalities for the binomial distribution. Proper choice of the parameters
∆ and δ yields the desired 1/

√
n-type lower bound for the minimax expected

distortion redundancy.
The proof of the general case is more complicated, but the basic idea

is the same. A complete proof is given only for the special case; the main
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steps of the proof of the general case are sketched in the Appendix at the
end of the section.

Proof of Theorem 7 (case d = 1, N = 3).
For simplicity we assume T = 1 (i.e., we consider distributions supported

in the interval [−1, 1]); the result is generalized for arbitrary T > 0 by
straightforward scaling. Define

J(µ, qn)
△

= ED(µ, qn)−D∗
N (µ)

and note that
sup

µ∈P(1)
J(µ, qn) ≥ sup

µ∈D
J(µ, qn)

for any restricted class of distributions D supported in [−1, 1]. In particular,
we let D contain two discrete distributions ν1 and ν2 concentrated on four
points {−1,−1 + ∆, 1−∆, 1} with probabilities

ν1(−1) = ν1(−1 + ∆) =
1− δ

4
, ν1(1−∆) = ν1(1) =

1 + δ

4

and

ν2(−1) = ν2(−1 + ∆) =
1 + δ

4
, ν2(1−∆) = ν2(1) =

1− δ

4

where the parameters 0 < δ < 1 and 0 < ∆ ≤ 1/2 are to be specified later.
The optimal 3-point quantizer q(i) for νi is easy to find. Since q(i) is a

nearest neighbor quantizer, its partition cells are intervals, and optimality
requires that each of these three intervals contain at least one of the four
atoms of νi. There are only three such partitions of the four points, and
the centroid condition (Lemma 1) will uniquely determine the codepoints
in each case. Thus there are only three possible candidates for an optimal
quantizer for νi.

It is easy to check that if 0 < δ < 1 and 0 < ∆ ≤ 1/2, then the unique
codebooks Ci of the optimal quantizers q(i), i = 1, 2, are given by

C1 =
{
−1 + ∆/2, 1−∆, 1

}
, C2 =

{
−1,−1 + ∆, 1−∆/2

}

with equal minimum distortions

D∗
3(ν1) = D∗

3(ν2) =
∆2

8
(1− δ).
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It is also easy to check that if δ ≤ 1/2 and ∆ ≤ 1/2, then for any 3-point
quantizer q there is a q′ ∈ {q(1), q(2)}, such that

D(νi, q
′) ≤ D(νi, q), i = 1, 2.

(Clearly, we need only to check that under both ν1 and ν2, the distor-
tion of say q(1) is less than that of any q that partitions the four points as
{−1}, {−1 + ∆, 1−∆} and {1}).

Let Q(n) denote the family of empirically designed quantizers qn such
that for every x1, . . . , xn, we have qn(·, x1, . . . , xn) ∈ {q(1), q(2)}. Then by
the preceding discussion,

inf
qn

sup
µ∈P(1)

J(µ, qn) ≥ inf
qn

max
µ∈{ν1,ν2}

J(µ, qn)

= inf
qn∈Q(n)

max
µ∈{ν1,ν2}

J(µ, qn). (21)

The maximum can be lower bounded by an average: If Z is a random
variable with distribution P{Z = 1} = P{Z = 2} = 1/2, then for any qn,

max
µ∈{ν1,ν2}

J(µ, qn) ≥
1

2

2∑

i=1

J(νi, qn) = EJ(νZ , qn). (22)

Define
M

△

= |{k : xk ∈ {−1,−1 + ∆}, k = 1 . . . n}|
i.e., M is the number of training samples falling in {−1,−1 + ∆}, and let
Q∗

n ∈ Q(n) be the “maximum likelihood” quantizer defined by

Q∗
n(·, x1, . . . , xn) =

{
q(1) if M < n/2

q(2) otherwise.

The idea is that M < n/2 indicates that the training data was drawn from
ν1, in which case q(1) is better than q(2). Next we show that this is indeed
the optimal strategy, i.e.,

inf
qn∈Q(n)

EJ(νZ , qn) = EJ(νZ , Q
∗
n). (23)

To prove (23), note that

EJ(νZ , qn) = E‖Y − qn(Y, Y1, . . . , Yn)‖2 − ED∗
N (µZ)

= E
{
E
(
‖Y − qn(Y, Y1, . . . , Yn)‖2|Y1, . . . , Yn

)}
− ED∗

N (µZ)
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where, under the condition Z = i, the sequence Y, Y1, . . . , Yn is condition-
ally i.i.d. with Y ∼ νi. Thus for any given x1, . . . , xn, a qn achieving the
infimum on the left side of (23) must pick a quantizer that is optimal for
the conditional distribution of Y given Yi = xi, i = 1, . . . , n. Note that by
conditional independence,

P{Y = x|Y1 = x1, . . . , Yn = xn}

=
2∑

i=1

P{Y = x|Y1 = x1, . . . , Yn = xn, Z = i}P{Z = i|Y1 = x1, . . . , Yn = xn}

=
2∑

i=1

P{Y = x|Z = i}P{Z = i|Y1 = x1, . . . , Yn = xn} (24)

for all x, x1, . . . , xn ∈ {−1,−1 + ∆, 1 − ∆, 1}. Since Z is uniformly dis-
tributed,

P{Z = 1|Y1 = x1, . . . , Yn = xn} > P{Z = 2|Y1 = x1, . . . , Yn = xn} (25)

if and only if

P{Y1 = x1, . . . , Yn = xn|Z = 1} > P{Y1 = x1, . . . , Yn = xn|Z = 2}. (26)

We have

P{Y1 = x1, . . . , Yn = xn|Z = i} =

(
1− δi
4

)M (1 + δi
4

)n−M

(27)

where δ1 = δ and δ2 = −δ. Thus (25) holds if and only if M < n/2.
Introducing the notation

pn(x)
△

= P{Y = x|Y1 = x1, . . . , Yn = xn}

and noting that P{Y = x|Z = i} = νi(x), we obtain from (24)-(27) that

pn(−1) = pn(−1 + ∆) < pn(1−∆) = pn(1)

if M < n/2, and

pn(−1) = pn(−1 + ∆) ≥ pn(1−∆) = pn(1)

otherwise. To avoid the asymmetry caused by tie-breaking if n is even,
we assume here that n is odd (this assumption is clearly insignificant). It
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follows that the optimal qn must pick q(1) if M < n/2, and q(2) otherwise,
i.e., qn = Q∗

n as claimed.
By symmetry we have

EJ(νZ , Q
∗
n) = J(ν1, Q

∗
n). (28)

With a slight abuse of notation, let now M denote the number of training
samples, drawn independently under ν1, falling in {−1,−1 + ∆}. Since
D(ν1, q

(1)) = ∆2(1 − δ)/8 and D(ν1, q
(2)) = ∆2(1 + δ)/8, it is easy to see

that

J(ν1, Q
∗
n)

=
∆2

8
(1− δ)P{M < n/2}+ ∆2

8
(1 + δ)P{M ≥ n/2} − ∆2

8
(1− δ)

=
∆2

4
δ P{M ≥ n/2}.

Note thatM has binomial distribution with parameters n and p = (1−δ)/2.
From (21), (22), (23), and (28) we conclude that for all ∆, δ ≤ 1/2,

inf
qn

sup
µ∈P(1)

J(µ, qn) ≥
∆2

4
δ P{M ≥ n/2}. (29)

The above binomial probability can be lower bounded via the standard
method of normal approximation. However, it is more convenient to use
a non-asymptotic inequality by Slud (1977) which states that for all np ≤
k ≤ n(1− p),

P{M ≥ k} ≥ Φ

(
− k − np√

np(1− p)

)

where Φ is the standard normal distribution function. Letting

δ =
1√
n

for n ≥ 4, the choice k = ⌈n/2⌉ satisfies the conditions of Slud’s inequality,
and we obtain

P{M ≥ n/2} ≥ Φ

(
− n/2 + 1− n(1− 1/

√
n)/2√

n(1− 1/
√
n)(1 + 1/

√
n)/4

)

≥ Φ(−2)
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where the second inequality holds for all n ≥ 6. Combining this with (29)
and setting ∆ = 1/2, we obtain for all n ≥ 6,

inf
qn

sup
µ∈P(1)

J(µ, qn) ≥
Φ(−2)/16√

n
.

If we consider P(T ) rather than P(1), then ∆ becomes T/2, and so the
theorem holds with C2 = T 2Φ(−2)/16 and n0 = 6. �

The next result provides a similar lower bound on the bias of the training
distortion of empirically optimal quantizers in estimating the optimal dis-
tortion. The theorem shows that there exist “bad” distributions for which
the bias is on the order of 1/

√
n. This lower bound matches, at least in

order of magnitude, the upper bound of Theorem 5. Again, we prove only
the special case d = 1, N = 3. In the general case the argument is similar,
but the details are more involved.

Theorem 8 If N ≥ 3, then for the empirically optimal N -point quantizer
q∗n trained on n ≥ n0 samples,

sup
µ∈P(T )

D∗
N (µ)− ED(µn, q

∗
n) ≥

C3√
n

where n0 depends only on N , and C3 is a positive constant that depends only
on d, N , and T .

Proof (case d = 1, N = 3). Suppose T = 1 and let the discrete random
variable X ∼ µ be uniformly distributed on {−1,−1 + ∆, 1 − ∆, 1}. It is
easy to see that if 0 < ∆ < 2/3, then there are exactly two optimal 3-point
quantizers for X; one with codebook

C1 = {−1 + ∆/2, 1−∆, 1}
the other with codebook

C2 = {−1,−1 + ∆, 1−∆/2}.
Let q∗ be the nearest neighbor quantizer with codebook C1. The training
data X1, . . . , Xn consist of i.i.d. copies of X. Let M be the number of Xk,
k = 1, . . . , n such that Xk ∈ {−1,−1 + ∆}. Then

D∗
3(µ) = E(X − q∗(X))2 = E

{
1

n

n∑

k=1

(Xk − q∗(Xk))
2

}

=
1

n

∆2

4
EM (30)
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where the second equality holds because (q∗(Xk)−Xk)
2 = ∆2/4 if Xk takes

value in {−1,−1 + ∆} and (q∗(Xk)−Xk)
2 = 0 otherwise.

Let the training set dependent nearest neighbor quantizer qn be the
following: the codebook of qn is C1 if M < n/2 and the codebook is C2 if
M ≥ n/2. Then the expected training distortion of qn is

ED(µn, qn) = E

{
1

n

n∑

k=1

(Xk − qn(Xk))
2

}

=
1

n

∆2

4
Emin(M,n−M). (31)

Since the empirically optimal 3-point quantizer q∗n minimizes the training
distortion, we have

ED(µn, qn) ≥ ED(µn, q
∗
n).

Hence (30) and (31) imply

D∗
3(µ)− ED(µn, q

∗
n) ≥

1

n

∆2

4
E
{
M −min(M,n−M)

}
.

Since M is binomial with parameters (n, 1/2), its distribution is symmetric
about n/2. Thus

E
{
M −min(M,n−M)

}
= E

{(
2M − n

)+}

= E

{
2

(
M − n

2

)+}

= E

∣∣∣∣M − n

2

∣∣∣∣.

Now we can apply a special case of Khintchine’s inequality (see Szarek
(1976)) stating that ifM has binomial distribution with parameters (n, 1/2),
then

E

∣∣∣∣M − n

2

∣∣∣∣ ≥
√
n

8
.

We conclude that for all ∆ < 2/3 and n ≥ 1,

sup
µ∈P(1)

D∗
3(µ)− ED(µ, q∗n) ≥

∆2

8
√
2

1√
n
.

If we consider distributions in P(T ) rather than in P(1), then the constraint
on ∆ becomes ∆ < 2T/3, and we obtain

sup
µ∈P(T )

D∗
3(µ)− ED(µ, q∗n) ≥

T 2

18
√
2

1√
n
.
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Notes
Theorem 7 is from Bartlett, Linder, and Lugosi (1998). A related lower

bound in an information-theoretic setting was proved by Merhav and Ziv
(1997). Theorem 8 is based on Linder (2000).

Appendix

Sketch of proof of Theorem 7 (case d ≥ 1, N ≥ 3).
Step 1: Define the restricted class of distributions D as follows: each

member of D is concentrated on the set of 2m = 4N/3 fixed points {zi, zi +
w : i = 1 . . . ,m}, where w = (∆, 0, 0, . . . , 0) is a fixed d-vector, and ∆ is a
small positive number to be determined later. The positions of z1, . . . , zm ∈
BT satisfy the property that the distance between any two of them is greater
than 3∆. For the sake of simplicity, we assume thatN is divisible by 3. (This
assumption is clearly insignificant.) For 0 < δ ≤ 1/2 and i = 1, . . . ,m, set

ν(zi) = ν(zi + w) =





either
1− δ

2m

or
1 + δ

2m

such that exactly half of the pairs {zi, zi + w} have mass (1 − δ)/m, and
the other half of the pairs have mass (1+ δ)/m, so that the total mass adds
up to one. Let D contain all such distributions. The cardinality of D is
K =

(
m

m/2

)
. Denote the members of D by ν1, . . . , νK .

Step 2: Let Q denote the collection of N -point quantizers q such that
for m/2 values of i ∈ {1, . . . ,m}, q has codepoints at both zi and zi + w,
and for the remaining m/2 values of i, q has a single codepoint at zi +w/2.
Then for each νi the unique optimal N -point quantizer is in Q. It is easy to
see that for all i,

D∗
N (νi) = min

q∈Q
D(νi, q) =

∆2

8
(1− δ).

Step 3: One can show that for any N -point quantizer q there exists a
q′ ∈ Q such that, for all ν in D, D(ν, q′) ≤ D(ν, q). Thus if Q(n) denotes
the family of empirically designed quantizers qn such that for every fixed
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x1, . . . , xn, we have qn(·, x1, . . . , xn) ∈ Q, then

inf
qn

sup
µ∈P(T )

J(µ, qn) ≥ inf
qn

max
µ∈D

J(µ, qn)

= inf
qn∈Q(n)

max
µ∈D

J(µ, qn).

Step 4: Let Z be a random variable which is uniformly distributed on
the set of integers {1, 2, . . . ,K}. Then, for any qn, we have

max
ν∈D

J(µ, qn) ≥
1

K

K∑

i=1

J(νi, qn) = EJ(νZ , qn).

Let Q∗
n denote the “maximum-likelihood” quantizer from Q, that is, if Mi

denotes the number of training samples falling in {zi, zi + w}, then Q∗
n has

a codepoint at both zi and zi+w if the corresponding Mi is one of the m/2
largest values. For the other i’s (i.e., those with the m/2 smallest Mi’s) Q

∗
n

has a codepoint at zi + w/2. Then it can be proved that

inf
qn∈Q(n)

EJ(νZ , qn) = EJ(νZ , Q
∗
n).

Step 5: By symmetry

EJ(νZ , Q
∗
n) = J(ν1, Q

∗
n).

Under ν1, the vector of random integers (M1, . . . ,Mm) is multinomially dis-
tributed with parameters (n, p1, . . . , pm), where p1 = p2 = · · · = pm/2 =
(1− δ)/m, and pm/2+1 = · · · = pm = (1 + δ)/m. Let Mσ(1), . . . ,Mσ(m) be a
reordering of the Mi’s such that Mσ(1) ≤ Mσ(2) ≤ · · · ≤ Mσ(m). (In case of
equal values, break ties using a random ordering.) Let Pj , j = 1, . . . ,m/2
be the probability of the event that among Mσ(1), . . . ,Mσ(m/2) there are ex-
actly j of the Mi’s with i ≥ m/2 (i.e., the “maximum likelihood” estimate
makes j mistakes). Then it is easy to see that

J(ν1, Q
∗
n) =

∆2δ

2m

m/2∑

j=1

jPj

since one “mistake” increases the distortion by ∆2δ/(2m).

Step 6: Using properties of the multinomial distribution, the above sum
can be lower bounded in terms of the binomial probability P{M1 > n/m}.
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Using normal approximation to binomials and choosing δ =
√
m/n, we

obtain for all n ≥ 8m/Φ(−2)2,

J(ν1, Q
∗
n) ≥

∆2Φ(−2)4

512

√
m

n
.

Step 7: It remains to choose ∆ as large as possible such that m pairs
of points {zi, zi + w} can be placed in BT so that the distance between
any two of the zi’s is at least 3∆. A standard argument relating packings
and coverings shows that ∆ = T/(4m1/d) satisfies this property, and so we
obtain for all n ≥ n0 = 16N/(3Φ(−2)2),

inf
qn

sup
µ∈P(T )

J(µ, qn) ≥
C2√
n

where C2 = T 2Φ(−2)42−13
√

(2N/3)1−4/d. �

6 Fundamentals of variable-rate quantization

In fixed-rate quantization, the possible outputs of a quantizer are represented
by distinct binary strings of equal length. One can make a quantizer more
efficient by using a variable-length representation. The idea is to assign
shorter binary strings to quantizer outputs that occur more frequently (i.e.,
have higher probability), and longer binary strings to outputs that occur less
frequently (i.e., have lower probability). This way the average rate, defined
as the expected number of bits per quantizer output, can be substantially
reduced. In this case, the number of codevectors no longer determines the
rate, and in fact the average rate can be finite even if there are infinitely
many codevectors.

Formally, a variable-rate vector quantizer q is described by an encoder
α : Rd → I, where I is a countable index set, a decoder β : I → R

d, and
an index coder ψ : I → {0, 1}∗, where {0, 1}∗ denotes the collection of all
finite-length binary strings. If I is finite with N elements, without loss of
generality we always take I = {1, . . . , N}; otherwise I is taken to be the set
of all positive integers.

In variable-rate quantization, an input x ∈ R
d is encoded into an index

i = α(x), which is represented by the binary string ψ(i) for purposes of
storage or transmission. We require that ψ be invertible (in fact, as explained
below, we require more) and so i can be recovered from ψ(i), and the decoder
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can output β(i). Thus q maps any point x ∈ R
d into one of the codevectors

in the codebook {β(i); i ∈ I}, via the rule

q(x) = β(α(x)).

Letting Si = {x : α(x) = i} and yi = β(i) for all i ∈ I, we have, just as in
the fixed-rate case,

q(x) = yi if and only if x ∈ Si.

As before, we assume that the d-dimensional random vector X ∼ µ has
finite second moment E‖X‖2 < ∞, and define the distortion of q in the
usual way:

D(µ, q) = E‖X − q(X)‖2.
We require that the index coder ψ have the prefix-free property: If i 6= j,

then the string ψ(i) is not a prefix of the string ψ(j). In particular, the
prefix-free property implies that the binary codewords ψ(i), i ∈ I are all
distinct, so ψ is invertible. More importantly, the prefix-free property also
makes sure that if q is successively applied to a sequence of source outputs
x1, x2, . . . , xk of arbitrary length k, then from the binary string

ψ(α(x1))ψ(α(x2)) . . . ψ(α(xk))

obtained by concatenating the codewords ψ(α(xj)), j = 1, . . . , k, one can
uniquely recover the sequence of indices α(x1), α(x2), . . . , α(xk) and thus the
quantizer outputs q(x1), q(x2), . . . , q(xk).

The length function ℓ : I → {0, 1, 2, . . .} associates with each index i the
length of the corresponding codeword ψ(i), i.e., ℓ(i) = length(ψ(i)). The
rate of the variable-rate quantizer q is defined as the expected codeword
length:

r(µ, q)
△

= E ℓ(α(X)) =
∑

i∈I

ℓ(i)P{q(X) = yi}.

The following fundamental lemma gives a characterization of the set of
codelengths for index coders that have the prefix-free property. The proof
can be found, for example, in Cover and Thomas (1991).

Lemma 6 (Kraft’s inequality) If the binary codewords ψ(i), i ∈ I
have the prefix-free property, then their lengths ℓ(i), i ∈ I must satisfy the
inequality ∑

i∈I

2−ℓ(i) ≤ 1.
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Conversely, if the nonnegative integers ℓ(i), i ∈ I, satisfy this inequality,
then there exists a set of codewords with these lengths that has the prefix-free
property.

A length function ℓ is called admissible if it satisfies Kraft’s inequality.
Note that the distortion of q depends only on α and β, and that the rate of q
depends on ψ only through ℓ. By Kraft’s inequality, a prefix-free index coder
ψ exists for a given length function ℓ if and only if ℓ is admissible. Thus for
our purposes, it is enough to specify a quantizer q by its encoder α, decoder
β, and admissible length function ℓ. In this case, we write q ≡ (α, β, ℓ).

We are interested in the minimum distortion achievable for a given rate
R ≥ 0:

δ∗R(µ)
△

= inf
q:r(µ,q)≤R

D(µ, q).

To give some insight into the advantage of variable-rate quantization,
assume log2N is an integer and q∗ is an optimal N -level fixed-rate quantizer.
Then the lengths ℓ(i) = log2N , i = 1, . . . , N , are clearly admissible, so
we can view q∗ as a special variable-rate quantizer with (constant) length
function ℓ and rate r(µ, q∗) = log2N . Hence,

D(µ, q∗) ≥ inf
q:r(µ,q)≤log2 N

D(µ, q)

i.e., variable-rate quantizers always perform at least as well as fixed-rate
ones.

To assess the advantage quantitatively, suppose {Si}Ni=1 is the partition
of q∗ and denote pi = P{X ∈ Si}. The entropy of the discrete random
variable q∗(X) is the nonnegative quantity

H(q∗(X))
△

= −
N∑

i=1

pi log2 pi.

(Here we use the convention that 0 log2 0 = 0.) Using the inequality log2 t ≤
(t− 1) log2 e, valid for all t > 0, we see that

H(q∗(X))− log2N =
N∑

i=1

pi log2
1/N

pi

≤ log2 e
∑

i: pi>0

pi

(
1

Npi
− 1

)

≤ 0
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that is,
H(q∗(X)) ≤ log2N. (32)

It is easy to see that the inequality is strict unless pi = 1/N for all i. It can
be shown in a similar manner that for any admissible ℓ,

∑

i∈I

ℓ(i)pi ≥ H(q∗(X)).

Hence the entropy of a variable-rate quantizer is an absolute lower bound
on its rate. This lower bound can be approached by the Shannon-Fano
codelengths

ℓ∗(i)
△

=
⌈
− log2 pi

⌉
, i = 1, . . . N

(ℓ∗ is admissible since
∑N

i=1 2
−⌈− log2 pi⌉ ≤ ∑N

i=1 2
log2 pi = 1). Then ℓ∗

achieves the lower bound within one bit since

N∑

i=1

piℓ
∗(i) ≤

N∑

i=1

pi(− log2 pi + 1) = H(q∗(X)) + 1. (33)

When the probabilities pi, i = 1, . . . , N , are highly nonuniform, the
entropy H(q∗(X)) can be much less than log2N . In this case, as (32) and
(33) show, the rate of the variable-rate quantizer obtained from q∗ using the
Shannon-Fano codelengths can be significantly less than the rate R(q∗) =
log2N of the original fixed-rate quantizer.

The discussion above illustrates how the performance of an optimal fixed-
rate quantizer can be improved by appropriate variable-rate encoding. Note,
however, that even when q∗ is equipped with a length function ℓ that min-
imizes the expected codeword length, the resulting quantizer is not neces-
sarily an optimal variable-rate quantizer. In general, optimality issues in
variable-rate quantization are more difficult than in the fixed-rate case.

Notes
Fundamentals of the theory of lossless coding are given in Cover and

Thomas (1991). Gersho and Gray (1992) and Sayood (2000) discuss several
methods of variable-length lossless coding used in lossy data compression.
To facilitate analyses, it is customary in the quantization literature to ap-
proximate the average rate of a variable-rate quantizer by the entropy of the
quantizer output. In this “entropy-constrained” setting the optimal quan-
tizer performance is still hard to determine analytically (nontrivial examples
are known only in the scalar d = 1 case; see Berger (1972) and György and
Linder (2000)), but this approach makes it possible to find approximations
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to the optimal performance that become tight as the rate increases; see, e.g.,
Zador (1966) and (1982), Gish and Pierce (1968), and Gray, Linder, and Li
(2001). For a survey of results in this area, see Gray and Neuhoff (1998).

7 The Lagrangian formulation

At the core of our results on learning fixed-rate quantizers from empirical
data was the observation that we could restrict attention to the parametric
class of N -point nearest neighbor quantizers instead of having to deal with
the much larger class of all N -point quantizers. Unfortunately, for d ≥ 2
there is very little known concerning the structure of variable-rate quantizers
achieving minimum distortion δ∗R(µ) under a rate constraint R; nor is it
known whether an optimal variable-rate quantizer always exists.

In this section we recast the problem of optimal distortion-rate tradeoff
for variable-rate quantization in a Lagrangian formulation that will resolve
most of these difficulties. For a variable-rate quantizer q ≡ (α, β, ℓ), and for
λ > 0, define the Lagrangian distortion by

∆λ(µ, q)
△

= D(µ, q) + λr(µ, q) = E
{
‖X − q(X)‖2 + λℓ(α(X))

}

and the optimal Lagrangian performance by

∆∗
λ(µ)

△

= inf
q
∆λ(µ, q)

where the infimum is taken over all variable-rate quantizers.
To see the connection between the original and the Lagrangian formula-

tion of optimal variable-rate quantization, suppose that q∗λ achieves ∆∗
λ(µ),

i.e.,
∆λ(µ, q

∗
λ) = inf

q
D(µ, q) + λr(µ, q).

Consider any quantizer q′ with rate r(µ, q′) ≤ r(µ, q∗λ). Since D(µ, q′) +
λr(µ, q′) ≥ D(µ, q∗λ) + λr(µ, q∗λ), we have

D(µ, q′) ≥ D(µ, q∗λ) + λ(r(µ, q∗λ)− r(µ, q′))

≥ D(µ, q∗λ).

Thus q∗λ is an optimal variable-rate quantizer for the rate constraint R =
r(µ, q∗λ), i.e,

D(µ, q∗λ) = inf
q:r(µ,q)≤R

D(µ, q), r(µ, q∗λ) ≤ R.
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Unfortunately, the converse statement does not hold in general: For a given
R there may not exist λ > 0 such that q∗λ achieves δ∗R(µ). In other words, we
may not be able to find an optimal quantizer for an arbitrary rate constraint
R by minimizing ∆λ(µ, q) for some value of λ.

One can characterize the rates for which an optimal variable-rate quan-
tizer can be obtained by the Lagrangian design by considering the convex
hull of δ∗R(µ), defined as the largest convex function δ̂∗R(µ), R ≥ 0, which
is majorized by δ∗R(µ) (see Rockafellar (1970)). One can show that for a
given rate R, δ∗R(µ) is achievable by q∗λ for some λ > 0 if and only if δ∗R(µ)

coincides with its convex hull at this rate, i.e, δ∗R(µ) = δ̂∗R(µ). (Here the
Lagrange multiplier λ is the slope of the line supporting the convex hull.)
Thus by minimizing ∆λ(µ, q) for all values of λ, one can obtain all variable-
rate quantizers that achieve the convex hull of δ∗R(µ). For values of R such

that δ̂∗R(µ) is strictly less than δ∗R(µ) (such R exist if and only if δ∗R(µ)
is not convex), optimal variable-rate quantizers cannot be obtained by the
Lagrangian method. However, this is not a serious limitation in practical
applications since any rate and distortion pair (R, δ̂∗R(µ)) on the convex hull
can be achieved by “timesharing” between two quantizers that achieve the
convex hull, i.e., two quantizers that can be obtained by Lagrangian mini-
mization.

The Lagrangian formulation yields a set of useful necessary conditions for
quantizer optimality. The following result is the variable-rate counterpart
of Lemma 1.

Lemma 7 Suppose q ≡ (α, β, ℓ) is an arbitrary variable-rate quantizer.
Then in each of the following three cases the variable-rate quantizer q′ de-
fined there satisfies

∆λ(µ, q
′) ≤ ∆λ(µ, q).

(a) q′ ≡ (α′, β, ℓ), where the encoder α′ is defined by

α′(x) = argmin
i∈I

(
‖x− β(i)‖2 + λℓ(i)

)
, x ∈ R

d

(ties are broken arbitrarily).

(b) q′ ≡ (α, β′, ℓ), where the decoder β′ is defined by

β′(i) = argmin
y∈Rd

E[‖X − y‖2|α(X) = i] = E[X|α(X) = i], i ∈ I.
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(c) q′ ≡ (α, β, ℓ′), where the codelength function ℓ′ minimizes

∑

i∈I

ℓ(i)P{α(X) = i}

over all admissible codelengths ℓ.

Proof. To prove (a), let Si = {x : α(x) = i}, i ∈ I denote the partition
cells of q. Note that the equation defining α′ is equivalent to

‖x− β(α′(x))‖2 + λℓ(α′(x)) = min
i∈I

(
‖x− β(i)‖2 + λℓ(i)

)
. (34)

To see that the minimum (and so α′) is well defined for all x even when
I is not finite, note that in this case the admissibility of ℓ implies that
limi→∞ ℓ(i) = ∞. Thus for each x it suffices to take the minimum over a
finite subset of I. Hence (34) is always well defined, and we obtain

∆λ(µ, q) =
∑

j∈I

∫

Sj

(
‖x− β(j)‖2 + λℓ(j)

)
µ(dx)

≥
∑

j∈I

∫

Sj

min
i∈I

(
‖x− β(i)‖2 + λℓ(i)

)
µ(dx)

= ∆λ(µ, q
′).

To prove (b), notice that the choice of the decoder only affects the term
‖x − q(x)‖2 in the Lagrangian expression. Therefore (b) follows directly
from the centroid condition of Lemma 1.

Finally, write

∆λ(µ, q) = E‖X − β(α(X))‖2 + λ
∑

i∈I

ℓ(i)pi

where pi = P{α(X) = i}. Now (c) follows since for α and β fixed, the admis-
sible length function that minimizes

∑
i∈I ℓ(i)pi is the one that minimizes

the overall Lagrangian distortion. �

Remarks (i) Lemma 7 (a) is analogous to the nearest neighbor condition
of fixed-rate quantization. An optimal α′ for a given β and ℓ is called a
modified nearest neighbor encoder.

(ii) For a finite index set I, optimal codelengths in part (c) of the lemma
can be obtained, for example, as the codelengths of the binary Huffman
code for the probabilities pi = P{α(X) = i}, i ∈ I (see, e.g., Cover and
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Thomas (1991)). For infinite index sets the existence of an optimal prefix-
free code and an associated optimal admissible length function is shown
in Linder, Tarokh, and Zeger (1997) under the condition that the entropy
−∑i∈I pi log2 pi is finite.

The next result shows the existence of quantizers minimizing the La-
grangian distortion. The proof, which we omit here, relies on the optimal-
ity criteria of Lemma 7, but is somewhat more involved than the proof of
the analogous Theorem 1. The difficulty is posed by the fact that opti-
mal variable-rate quantizers can have an infinite number of codevectors. Of
course, if a quantizer minimizes the Lagrangian distortion, it can be assumed
to have a modified nearest neighbor encoder by Lemma 7.

Theorem 9 For any µ with finite second moment and λ > 0 there is a
variable-rate quantizer q∗λ with a modified nearest neighbor encoder such that

∆λ(µ, q
∗
λ) = ∆∗

λ(µ).

Remark The necessary conditions for optimality in Lemma 7 suggest an
iterative algorithm for designing variable-rate quantizers in a manner analo-
gous to the fixed-rate case. Let ∆λ(α, β, ℓ) stand for ∆λ(µ, q) if q ≡ (α, β, ℓ).
Start with an arbitrary quantizer q0 ≡ (α(0), β(0), ℓ(0)) with a finite index
set. In the mth iteration (m = 1, 2, . . .), first choose α(m) to minimize
∆λ(α, β

(m−1), ℓ(m−1)) for fixed β(m−1) and ℓ(m−1), then choose β(m) to min-
imize ∆λ(α

(m), β, ℓ(m−1)) for fixed α(m) and ℓ(m−1), and then choose an
admissible ℓ(m) to minimize ∆λ(α

(m), β(m), ℓ) for fixed α(m) and β(m). Since
the Lagrangian distortion is decreasing (or at least not increasing) in each
step, setting

q(m) ≡ (α(m), β(m), ℓ(m))

we obtain
∆λ(µ, q

(m)) ≤ ∆λ(µ, q
(m−1))

so limm→∞∆λ(µ, q
(m−1)) − ∆λ(µ, q

(m)) = 0. The algorithm stops (after a
finite number of iterations) when the drop in distortion falls below a given
threshold. It may be necessary to repeat this procedure several times with
different values of λ to obtain a quantizer with rate that is close enough to
the desired rate.

As in the fixed-rate case, the algorithm is most often used with the
empirical distribution µn in place of µ. Although the sequence of distortions
converges as m → ∞, there is no guarantee that the limit is the optimum
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distortion. However, the quantizers designed using this algorithm have very
favorable performance in general.

Notes
The optimality conditions of Lemma 7 are due to Chou, Lookabaugh,

and Gray (1989) who also introduced the Lagrangian formulation of variable-
rate vector quantization discussed in this section. Theorem 9 is proved in
György and Linder (2001b) (see György and Linder (2001a) for an existence
result that does not assume the Lagrangian formulation). Gray, Linder,
and Li (2001) used the Lagrangian formulation for the asymptotic (high-
rate) analysis of optimal entropy-constrained vector quantizer performance.
The algorithm sketched above is the well-known entropy-constrained vector
quantizer design algorithm of Chou et al. (1989).

8 Consistency of Lagrangian empirical design

We are interested in the performance of quantizers learned from a finite
training sequence. As before, let Xn

1 = X1, . . . , Xn be i.i.d. copies of X
such that Xn

1 and X are also independent, and let µn denote the empirical
distribution of Xn

1 . Fix λ > 0 and assume that the empirically optimal
variable-rate quantizer q∗n is one that minimizes the empirical Lagrangian
distortion:

∆λ(µn, q
∗
n) = inf

q
∆λ(µn, q) = ∆∗

λ(µn)

i.e.,

q∗n = argmin
q≡(α,β,ℓ)

1

n

n∑

k=1

‖Xk − β(α(Xk))‖2 + λℓ(α(Xk)).

We will always assume that q∗n has a modified nearest neighbor encoder (see
Theorem 9).

As before, the performance of the empirically optimal variable-rate quan-
tizer q∗n = (α∗

n, β
∗
n, ℓ

∗
n) is measured by its Lagrangian test distortion, given

by
∆λ(µ, q

∗
n) = E

[
‖X − β∗n(α

∗
n(X))‖2 + λℓ∗n(α

∗
n(X))|Xn

1

]
.

The following theorem, the variable-rate counterpart of Theorem 2, shows
that the design based on the minimization of the empirical Lagrangian dis-
tortion is consistent.

Theorem 10 (Consistency of Lagrangian empirical design) For any
λ > 0 the sequence of variable-rate quantizers q∗n, n = 1, 2, . . ., minimizing
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the empirical Lagrangian distortion satisfies

lim
n→∞

∆λ(µ, q
∗
n) = ∆∗

λ(µ) a.s.

The proof is based on the properties of the metric ρ(µ, ν) introduced in
Section 3, but we need some additional definitions and auxiliary results.

Let D denote the set of all discrete distributions on R
d with finite second

moment and finite entropy. That is, ν ∈ D if and only if ν is concentrated
on a finite or countably infinite set {xi; i ∈ Iν} ⊂ R

d, and satisfies
∑

i∈Iν

‖xi‖2ν(xi) <∞, −
∑

i∈Iν

ν(xi) log2 ν(xi) <∞.

For any ν ∈ D let Lν denote the minimum expected codelength over all
admissible codelength functions ℓ : Iν → {0, 1, . . .},

Lν = min
ℓ

∑

i∈Iν

ℓ(i)ν(xi). (35)

Note that by the remark after Lemma 7, a minimizing admissible ℓ always
exists, and that Lν <∞ by the Shannon-Fano bound (33).

For λ > 0, µ with finite second moment, and ν ∈ D define

ρλ(µ, ν)
△

=
(
ρ(µ, ν)2 + λLν

)1/2
.

To interpret ρλ(µ, ν), suppose X ∼ µ and Y ∼ ν achieve ρ(µ, ν), and let ℓν
be an admissible codelength achieving Lν in (35). Then Y can be viewed as
the output of a variable-rate “random quantizer” that, to each x, assigns the
reproduction vector xi and a binary codeword of length ℓν(i) with probabil-
ity P{Y = xi|X = x}. The quantity ρλ(µ, ν)

2 is the Lagrangian distortion
of this random quantizer.

In this interpretation, the next lemma states that deterministic quantiz-
ers always outperform random quantizers in the Lagrangian sense.

Lemma 8
∆∗

λ(µ) = inf
ν∈D

ρλ(µ, ν)
2.

Proof. Suppose q ≡ (α, β, ℓ) is a variable-rate quantizer such that ∆λ(µ, q) <
∞. Let νq denote the distribution of the discrete random variable q(X) and
note that νq ∈ D. Since X ∼ µ and q(X) ∼ νq,

∆λ(µ, q) = E‖X − q(X)‖2 + λE ℓ(α(X))

≥ ρ(µ, νq)
2 + λLνq

= ρλ(µ, νq)
2
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and hence
∆∗

λ(µ) = inf
q
∆λ(µ, q) ≥ inf

ν∈D
ρλ(µ, ν)

2.

To show the reverse inequality, assume X ∼ µ and Y ∼ ν achieve ρ(µ, ν),
where ν ∈ D is concentrated on a countable set of points {yi; i ∈ Iν}. Define
the variable-rate quantizer q with index set Iν to have decoder β(i) = yi,
i ∈ Iν , codelength ℓν such that

Lν =
∑

i∈Iν

ℓν(i)ν(yi)

and encoder α that is optimized for β and ℓν , i.e.,

α(x) = argmin
i∈Iν

(
‖x− yi‖2 + λℓν(i)

)
.

Then
∆λ(µ, q) = Emin

i∈Iν

(
‖X − yi‖2 + λℓν(i)

)
.

Since X and Y achieve ρ(µ, ν), and Y takes values in {yi; i ∈ Iν},

ρλ(µ, ν)
2 = E

{
‖X − Y ‖2 + λLν

}

=

∫

Rd

∑

i∈Iν

(
‖x− yi‖2 + λℓν(i)

)
P{Y = yi|X = x}µ(dx)

≥
∫

Rd

min
i∈Iν

(
‖x− yi‖2 + λℓν(i)

)
µ(dx)

= ∆λ(µ, q)

and so we obtain
inf
ν∈D

ρλ(µ, ν)
2 ≥ inf

q
∆λ(µ, q).

�

As a consequence of the previous lemma, we obtain a stability result for
the optimal Lagrangian performance which is the variable-rate counterpart
of Lemma 3.

Lemma 9 For any µ and µ′ with finite second moment,

∣∣∆∗
λ(µ)

1/2 −∆∗
λ(µ

′)1/2
∣∣ ≤ ρ(µ, µ′).
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Proof. Assume ∆∗
λ(µ) ≥ ∆∗

λ(µ
′). Fix ǫ > 0 and let ν ′ ∈ D be such that

ρλ(µ
′, ν ′) ≤ inf

ν∈D
ρλ(µ

′, ν) + ǫ.

Then by Lemma 8,

∆∗
λ(µ)

1/2 −∆∗
λ(µ

′)1/2 = inf
ν∈D

ρλ(µ, ν)− inf
ν∈D

ρλ(µ
′, ν)

≤ inf
ν∈D

ρλ(µ, ν)− ρλ(µ
′, ν ′) + ǫ

≤ ρλ(µ, ν
′)− ρλ(µ

′, ν ′) + ǫ

=
(
ρ(µ, ν ′)2 + λLν′

)1/2 −
(
ρ(µ′, ν ′)2 + λLν′

)1/2
+ ǫ

≤ |ρ(µ, ν ′)− ρ(µ′, ν ′)|+ ǫ

≤ ρ(µ, µ′) + ǫ

where the third inequality holds because (a+ c)1/2− (b+ c)1/2 ≤ a1/2− b1/2

for all a ≥ b ≥ 0, c ≥ 0 by the concavity of the square root, and the
last inequality follows from the triangle inequality since ρ is a metric (see
Lemma 2). Since ǫ > 0 was arbitrary, we obtain ∆∗

λ(µ)
1/2 − ∆∗

λ(µ
′)1/2 ≤

ρ(µ, µ′). The case ∆∗
λ(µ

′) ≥ ∆∗
λ(µ) is handled similarly. �

The preceding lemma immediately implies that the Lagrangian train-
ing distortion ∆λ(µn, q

∗
n) is a strongly consistent estimate of the optimal

Lagrangian distortion ∆∗
λ(µ).

Theorem 11
lim
n→∞

∆λ(µn, q
∗
n) = ∆∗

λ(µ) a.s.

Proof. Since ∆λ(µn, q
∗
n) = ∆∗

λ(µn), Lemma 9 with µ′ = µn gives

∣∣∆∗
λ(µ)

1/2 −∆∗
λ(µn)

1/2
∣∣ ≤ ρ(µ, µn).

The statement follows since we know from the proof of Theorem 2 that

lim
n→∞

ρ(µ, µn) = 0 a.s. (36)

�

Now we are ready to prove the consistency theorem.

Proof of Theorem 10. We have

∆λ(µ, q
∗
n)−∆∗

λ(µ)

= ∆λ(µ, q
∗
n)−∆∗

λ(µn) + ∆∗
λ(µn)−∆∗

λ(µ). (37)
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The second difference on the right side converges to zero a.s. by Theorem 11.
To bound the first difference, recall that by assumption, the encoder

of q∗n ≡ (α∗
n, β

∗
n, ℓ

∗
n) uses the modified nearest neighbor rule. Thus for any

x, y ∈ R
d,

‖x− q∗n(x)‖2 + λℓ∗n(α
∗
n(x)) ≤ ‖x− q∗n(y)‖2 + λℓ∗n(α

∗
n(y)). (38)

Now let X ∼ µ and Y ∼ µn achieve ρ(µ, µn), and in addition suppose that
the pair X,Y is independent of the training sequence Xn

1 . Letting En denote
conditional expectation with respect to Xn

1 , (38) implies

∆λ(µ, q
∗
n)

= En

{
‖X − q∗n(X)‖2 + λℓ∗n(α

∗
n(X))

}

≤ En

{
‖X − q∗n(Y )‖2 + λℓ∗n(α

∗
n(Y ))

}

≤ En‖X − Y ‖2 + En

{
‖Y − q∗n(Y )‖2 + λℓ∗n(α

∗
n(Y ))

}

+ 2En

{
‖X − Y ‖‖Y − q∗n(Y )‖

}

= ρ(µ, µn)
2 +∆λ(µn, q

∗
n) + 2En

{
‖X − Y ‖‖Y − q∗n(Y )‖

}

≤ ρ(µ, µn)
2 +∆λ(µn, q

∗
n) + 2

(
En‖X − Y ‖2

)1/2(
En‖Y − q∗n(Y )‖2

)1/2

= ρ(µ, µn)
2 +∆∗

λ(µn) + 2ρ(µ, µn)D(µn, q
∗
n)

1/2

where the last inequality follows from the Cauchy-Schwarz inequality. Since
D(µn, q

∗
n) ≤ ∆λ(µn, q

∗
n) = ∆∗

λ(µn), using Lemma 9 again, we obtain

D(µn, q
∗
n)

1/2 ≤ ∆∗
λ(µ)

1/2 + ρ(µ, µn)

and so

∆λ(µ, q
∗
n) ≤ ρ(µ, µn)

2 +∆∗
λ(µn) + 2ρ(µ, µn)

(
∆∗

λ(µ)
1/2 + ρ(µ, µn)

)

or

∆λ(µ, q
∗
n)−∆∗

λ(µn) ≤ ρ(µ, µn)
2 + 2ρ(µ, µn)

(
∆∗

λ(µ)
1/2 + ρ(µ, µn)

)
.

Therefore, by (36), the first difference in (37) converges to zero a.s. as n→
∞, completing the proof of the theorem. �

Notes
The material of this section is new. Lemma 8 has a counterpart in

fixed-rate quantization; see Pollard (1982a). Zador (1966) was probably the
first to use random quantization as a tool for analyzing the performance of
optimal variable-rate quantizers.
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9 Finite sample bounds in Lagrangian design

In analogy to the fixed-rate case, we would like to establish a connection
between the performance of the empirically designed variable-rate quantizer
and the number of training samples used in the design. The methods used
in proving such results in the fixed-rate case will turn out to be applicable
once we have established a variable-rate counterpart of Lemma 5.

As we did in Section 4, we assume here that the source distribution is
an element of P(T ), the set of probability distributions on R

d supported on
the closed ball BT of radius T centered at the origin.

In the next lemma we show that for sources with a given bounded
support, variable-rate quantizers that are optimal in the Lagrangian sense
can be assumed not to have too many codevectors or very large codeword
lengths. The strength of the Lagrangian approach is evident here; no such
general result is known for variable-rate quantizers that minimize the dis-
tortion for a given rate constraint.

For T > 0 and positive integers N and L, let QN,L(T ) denote the col-
lection of all variable-rate quantizers q ≡ (α, β, ℓ) with index set I such
that

(i) ‖β(i)‖ ≤ T for all i ∈ I;

(ii) α is a modified nearest neighbor encoder;

(iii) ℓ(i) ≤ L for all i ∈ I, and I is finite with cardinality |I| ≤ N .

Lemma 10 For any µ ∈ P(T ) and λ > 0,

min
q

∆λ(ν, q) = min
q∈QN,L(T )

∆λ(ν, q) (39)

where N = ⌊25T 2/λ⌋ and L = ⌊5T 2/λ⌋. Thus there exists q∗n ∈ QN,L(T ),
and for this q∗n we have

∆λ(µ, q
∗
n)−∆∗

λ(µ) ≤ 2 sup
q∈QN,L(T )

|∆λ(µn, q)−∆λ(µ, q)| (40)

Proof. The second statement is an easy consequence of the first one.
Let q∗ denote a variable-rate quantizer achieving the minimum Lagrangian
distortion ∆∗

λ(µ). Using the same argument as in Lemma 5, we obtain the
basic inequality

∆λ(µ, q
∗
n)−∆∗

λ(µ)

≤ ∆λ(µ, q
∗
n)−∆λ(µn, q

∗
n) + ∆λ(µn, q

∗)−∆λ(µ, q
∗).
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Since µ, µn ∈ P(T ), (39) implies that there exist q∗, q∗n ∈ QN,L(T ), and we
obtain (40).

To prove (39), suppose q ≡ (α, β, ℓ) with index set I achieves ∆∗
λ(ν).

Using the argument of Lemma 5, we see that any codevector of q outside
BT can be replaced by its projection to the surface of BT without increasing
the Lagrangian distortion, and so we can assume that ‖β(i)‖ ≤ T for all
i ∈ I.

Next note that by Lemma 7 (a) we can assume that α is a modified
nearest neighbor encoder. Also, we can assume that for each Si = {x :
α(x) = i}, i ∈ I, we have Si ∩ BT 6= ∅; otherwise, since ν ∈ P(T ), we can
discard i from I without affecting the performance. Let i0 ∈ I be an index
with minimum codeword length, i.e.,

ℓ(i0) = min
i∈I

ℓ(i).

Since α is a modified nearest neighbor encoder, for any i ∈ I and x ∈ Si,

‖x− β(i)‖2 + λℓ(i) ≤ ‖x− β(i0)‖2 + λℓ(i0).

Since ‖β(i0)‖ ≤ T , we have ‖x − β(i0)‖2 ≤ 4T 2 for all x ∈ BT , and since
Si ∩BT is nonempty, the previous inequality implies that for all i ∈ I,

ℓ(i) ≤ 4T 2

λ
+ ℓ(i0). (41)

Now let q1 denote the quantizer with a single codepoint y = 0 and rate
r(ν, q1) = 0 (formally, the single binary codeword of q1 is the empty string
of length zero). Then since ν ∈ P(T ),

∆λ(ν, q1) = D(ν, q1) + λr(ν, q1) ≤ T 2. (42)

On the other hand,

∆λ(ν, q) ≥ λr(ν, q) ≥ λℓ(i0)

which, together with (42) and the fact that ∆λ(ν, q) ≤ ∆λ(ν, q1) (since q
minimizes the Lagrangian distortion for ν), implies that

ℓ(i0) ≤
T 2

λ
.

Hence by (41), we have for all i ∈ I,

ℓ(i) ≤ 5T 2

λ
.
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The admissibility of ℓ then yields

1 ≥
∑

i∈I

2−ℓ(i) ≥ |I|2−5T 2/λ

and so |I| ≤ 25T
2/λ. Setting N = ⌊25T 2/λ⌋ and L = ⌊5T 2/λ⌋, we obtain

q ∈ QN,L(T ), which completes the proof. �

Lemma 10 allows us to adapt the proof of Theorem 3 to the Lagrangian
case. The following finite sample bound on the Lagrangian performance
on an empirically optimal variable-rate quantizer is the main result of this
section. In this result we assume (as we may by Lemma 10) that q∗n ∈
QN,L(T ).

Theorem 12 There is a constant C4, depending only on d, λ, and T , such
that for all n ≥ 1 and µ ∈ P(T ),

E∆λ(µ, q
∗
n)−∆∗

λ(µ) ≤
C4√
n
.

Proof. By Lemma 10, it suffices to give an appropriate upper bound on
the expected value of supq∈QN,L(T ) |∆λ(µn, q)−∆λ(µ, q)|.

For N and L as in Lemma 10 and q ≡ (α, β, ℓ) ∈ QN,L(T ), define the
distortion function

fλ,q(x)
△

= ‖x− q(x)‖2 + λℓ(α(x)).

Then for all x ∈ BT ,

0 ≤ fλ,q(x) ≤ 4T 2 + λL ≤ 4T 2 + λ⌊5T 2/λ⌋ = 9T 2.

Hence, we can repeat the steps leading to (11) in the proof of Theorem 3 to
obtain

sup
q∈QN,L(T )

∣∣∆λ(µn, q)−∆λ(µ, q)
∣∣

≤ 9T 2 sup
q∈QN,L(T ), u>0

∣∣∣∣∣
1

n

n∑

k=1

I{fλ,q(Xk)>u} − P{fλ,q(X) > u}
∣∣∣∣∣

= 9T 2 sup
A∈ÃN

|µn(A)− µ(A)| a.s.

where now ÃN is the family of subsets of Rd defined by

ÃN
△

=

{
{x : fλ,q(x) > u} : q ∈ QN,L(T ), u > 0

}
.
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Denoting by V (ÃN ) the vc dimension of ÃN and using the sharpened version
of the Vapnik-Chervonenkis inequality as in the proof of Theorem 3, we
obtain

E

{
sup

q∈QN,L(T )

∣∣∆λ(µn, q)−∆λ(µ, q)
∣∣
}

≤ 9T 2c

√
V (ÃN )

n
. (43)

Since the encoder of each q ∈ QN,L(T ) uses the modified nearest neighbor
rule, fλ,q(x) > u if and only if

‖x− β(i)‖2 + λℓ(i) > u for all i ∈ I

i.e.,

{x : fλ,q(x) > u} =
⋂

i∈I

{x : ‖x− β(i)‖2 > u− λℓ(i)}.

Since |I| ≤ N , we obtain that either {x : fλ,q(x) > u} is an intersection of
the complements of at most N closed balls of possibly different radii in R

d

(if u − λℓ(i) ≥ 0 for some i), or {x : fλ,q(x) > u} = R
d (this is the case if

u − λℓ(i) < 0 for all i). As in the proof of Theorem 3, let ĀN denote the
family of all intersections of complements of N closed balls in R

d. Then we
have ÃN ⊂ ĀN∪{Rd}, and so V (ÃN ) ≤ V (ĀN ). Thus we can use the upper
bound V (ĀN ) ≤ 4N(d+ 1) ln(N(d+ 1)) derived in the proof of Theorem 3
to obtain

V (ÃN ) ≤ 4N(d+ 1) ln(N(d+ 1)).

Thus (43) and Lemma 10 imply the theorem with

C4 = 18T 2c
√
4N(d+ 1) ln(N(d+ 1))

where N = ⌊25T 2/λ⌋. �

Remark A variable-rate versions of Theorem 5 and Theorem 6 can also be
derived from Lemma 10 and the inequality (43). In particular, the variable-
rate counterpart of Theorem 5 states that for every µ ∈ P(T ) the bias of
the expected Lagrangian training distortion is upper bounded as

∆∗
λ(µ)− E∆λ(µn, q

∗
n) ≤

C4/2√
n

where C4 is the constant in Theorem 12. Also, the bounded difference
inequality can be used to show that for every µ ∈ P(T ),

∆λ(µ, q
∗
n)−∆∗

λ(µ) = O

(√
lnn

n

)
a.s.
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which is the variable-rate counterpart of Theorem 6. The details are left as
an exercise.

Notes
The proof of Lemma 10 is based on an idea of Chou and Betts (1998).

The rest of the material in this section is new.
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