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Abstract. In 1971 Shimura showed that each weight 2 Hecke eigenfunction f gives rise to
both an abelian subvariety and an abelian quotient of the Jacobian variety of the modular
curve X1(N)/Q. The purpose of this paper is to show that both these constructions follow
from a general “dictionary” that translates statements about subvarieties and quotients of an
abelian variety into statements about ideals of the associated endomorphism algebra. This
dictionary is, in fact, a special case of more general dictionary which applies to subobjects
and quotients in a general semi-simple abelian category.
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1 Introduction

In his fundamental book, Shimura [Sh1] showed that each (Hecke) T-eigenfunction
f ∈ S2(N) on Γ1(N) gives rise to an abelian subvariety A′f ⊂ J1(N) of the Jacobian
variety of the modular curve X1(N)/Q, and in a subsequent paper [Sh2] he explained
that such Hecke eigenfunctions give more naturally rise to quotient varieties Af of
J1(N). The purpose of this paper is to show that both these constructions (and
more) follow from a general “dictionary” that translates statements about subvarieties
of abelian varieties into statements about ideals of the associated endomorphism
algebras.

To explain this more precisely, let A be an abelian variety over an arbitrary field
K, and let Sub(A/K) = {B ≤ A} denote the set of abelian subvarieties B of A
(which are defined over K). Then the aforementioned dictionary translates this set
into the set IdE of right ideals of the endomorphism algebra E = EndK(A) ⊗ Q of
A/K as follows:

Theorem 1.1 The map B 7→ I(B) := {f ∈ E : Imf ⊂ B} defines an inclusion-
preserving bijection

IA/K : Sub(A/K)
∼→ IdE

between the set of abelian subvarieties of A/K and the set of right ideals of E =
End0

K(A). Furthermore, if B1, B2 ∈ Sub(A/K) are any two abelian subvarieties,
then there is a canonical (functorial) isomorphism

Hom0(B1, B2) := HomK(B1, B2)⊗Q ∼→ HomE(I(B1), I(B2)).

1



This theorem is deduced in §3 from a general fact (Theorem 2.7) about semi-
simple abelian categories which is presented in §2. It is interesting to note that both
Theorem A of [KR] (cf. Remark 3.2(a)) and a result of Lange[Lan] (Corollary 3.5)
are easily deduced from this theorem.

Another consequence of Theorem 1.1 is the following. If V is any faithful (left)
E-module, then there is a natural bijection between Sub(A/K) and certain algebraic
subspaces of V ; cf. Theorem 4.1. In the case that V is finitely generated, this yields
(via the Morita theorems) the following result.

Corollary 1.2 Let V be a faithful, finitely generated left E-module. Then the map
B 7→ I(B)V defines an inclusion-preserving bijection

SA/K,V : Sub(A/K)
∼→ Sub

Ẽ
(V )

between the set of abelian subvarieties of A/K and the set of left Ẽ-submodules of V ,
where Ẽ = EndE(V ). Thus, for each left Ẽ-submodule W ⊂ V there is a unique abelian
subvariety BW ⊂ A such that SA/K,V (BW ) = W , and we have a ring isomorphism

θW : End
Ẽ
(W )

∼→ End0(BW ).

Two natural examples for which this result can be applied are V = H1(Aan,Q), the
first homology group of the underlying analytic space Aan (if K = C) and V = T0(A),
the tangent space of A at 0 (if K = Q). Now it is the second example which gives
rise to Shimura’s (first) construction because the latter may be deduced from the
following general statement.

Corollary 1.3 Let A/Q be an abelian variety, and suppose that there exists a commu-
tative subring T ⊂ E = End0(A) such that both T0(A) and T0(A)∗ are free T-modules
of rank 1. Fix a T-module isomorphism ϕ : T0(A)∗

∼→ T0(A), and let W ⊂ T0(A)∗ be
a T-submodule. Then ϕ(W ) ⊂ T0(A) does not depend on the choice of ϕ and there is
a unique abelian subvariety BW ∈ Sub(A/Q) such that T0(BW ) = ϕ(W ). Moreover,
dimBW = dimQW .

Indeed, as will be explained in section 5, this can be applied directly to the case
A = J1(N), the Jacobian of the modular curve X1(N); cf. Theorem 5.1.

As Shimura explained in [Sh2], it is, however, more natural to work with abelian
quotients of A in place of abelian subvarieties because then we can work with the
dual module Ω(A) = H0(A,Ω1

A/K) ' T0(A)∗ directly. More precisely, we have the

following result (which is a special case of Corollary 4.4):

Theorem 1.4 If A is an abelian variety over a number field K and p : A → C is a
quotient of A, then the assignment (C, p) 7→ p∗Ω(C) ⊂ Ω(A) := H0(A,Ω1

A/K) induces
a bijection

QA/K,Ω : Quot(A/K)
∼→ Sub

Ẽ
(Ω(A))
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between the set of abelian quotients of A/K and the set of left Ẽ-submodules of Ω(A),
where Ẽ = EndE(Ω(A)). In particular, if there exists a commutative subring T ⊂ E
such that Ω(A) is a free T-module of rank 1, then for every T-submodule W ⊂ Ω(A)
there exists a unique abelian quotient pW : A → CW such that p∗WΩ(CW ) = W . In
addition, dimCW = dimKW .

As will be explained in section 5, the above theorem applies in particular to the
case that A = J1(N) is the Jacobian of the modular curve X1(N)/Q and T = TQ is
the Hecke algebra of J1(N). We thus obtain a different characterization (and proof)
of the (second) Shimura construction [Sh2].

Moreover, we can use the above dictionary to construct other interesting sub-
varieties and/or abelian quotients of J1(N). These will be used to show how the
Atkin-Lehner decomposition of S2(Γ,Q) gives rise to an isogeny decomposition of
J1(N) of the form

J1(N) ∼
∏

f∈N (Γ1(N))/GQ

A
nf
f .(1)

Here N (Γ1(N)) denotes the set of all weight 2 newforms (of all levels) on Γ1(N), Af
is the abelian variety attached to (the Galois orbit of) f ∈ N (Γ1(N)) by the Shimura
construction, and nf = σ0(N/Nf ) denotes the number of divisors of N/Nf , where
Nf |N denotes the level of the newform f .

This paper is organized as follows. In section 1 we shall explain the general
categorical setting for the above results and prove them in that generality. Thus, all
the above results also hold for motives; cf. [Ja]. In sections 3 and 4 we shall specialize
them to the case of abelian varieties, and in section 5 we shall apply them to generalize
the results of Shimura [Sh1], [Sh2] for Jacobians of modular curves.

2 The categorical background

Let X ∈ ob(C) be an object of a category C, and let SubC(X) = SubC(X)/∼ de-
note the classes of subobjects of X. Here SubC(X) denotes the class of pairs (Y, f)
where Y ∈ ob(C) and f : Y → X is a monic (=monomorphism) in C, and ∼ is
the equivalence relation induced by the pre-order on SubC(X). By definition, the
latter is given by (Y1, f1) ≤ (Y2, f2) ⇔ f1 = f2g, for some g ∈ Hom(Y1, Y2). Thus,
(Y1, f1) ∼ (Y2, f2)⇔ (Y1, f1) ≤ (Y2, f2) ≤ (Y1, f1)⇔ f1 = f2g, for some isomorphism
g : Y1

∼→ Y2 (cf. [Mac], p. 122), and the pre-order on SubC(X) induces a partial order
on SubC(X).

Similarly, let QuotC(X) = QuotC(X)/∼ denote the class of quotients of X, which
is defined by duality: QuotC(X) = SubCop(X).

In the sequel we shall be particularly interested in the subclass Sub′C(X) =
Sub′C(X)/∼ of SubC(X) consisting of the split subobjects of X, i.e. Sub′C(X) consists
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of pairs (Y, f) where f : Y → X is a split monic in the sense of [Mac], p. 19: there ex-
ists g : X → Y such that gf = 1Y . Analogously, the class Quot′C(X) = Quot′C(X)/∼
of split quotients (or retracts) of X is defined. We observe:

Remark 2.1 If F : C1 → C2 is a functor, then F maps split monics and split epis in
C1 to split monics and split epis in C2, respectively. Thus, for each X ∈ ob(C1), we
have induced maps

FX : Sub′C1(X)→ Sub′C2(F (X)), XF : Quot′C1(X)→ Quot′C2(F (X)),

given by the rules FX((Y, f)) = (F (Y ), F (f)) and XF ((Y, f)) = (F (Y ), F (f)). It is
clear that FX is pre-order preserving in the sense that

(Y1, f1) ≤ (Y2, f2) ⇒ FX((Y1, f1)) ≤ FX((Y2, f2)),(2)

for all (Yi, fi) ∈ Sub′C1(X)), i = 1, 2, because f1 = f2g ⇒ F (f1) = F (f2)F (g).
Similarly, XF is pre-order preserving, and hence FX and XF induces order-preserving
maps

FX : Sub′C1(X)→ Sub′C2(F (X)) and XF : Quot′C1(X)→ Quot′C2(F (X))

on the equivalence classes. Note that if F is fully faithful, then the converse of (2)
holds and hence FX and XF are injective in this case. Moreover, if F is an equivalence
of categories, then it is easy to see that FX and XF are bijections.

We now suppose that C is a preadditive category, so EX = EndC(X) is naturally
a ring; cf. [Mac], p. 28. In that case we can identify Sub′C(X) with a certain subset
of the set IdEX of right ideals of EX , and similarly Quot′C(X) can be identified with
subset of the set EXId of left ideals of EX , as we shall now see.

Proposition 2.2 Let X ∈ ob(C) be an object of a preadditive category C and put
EX = EndC(X). Then the rules (Y, f) 7→ IX(Y, f) := fHomC(X, Y ) and (Y, f) 7→
XI(Y, f) := HomC(Y,X)f induce order-preserving bijections

IX : Sub′C(X)
∼→ SpIdCEX and XI : Quot′C(X)

∼→ EXSpIdC,

where SpIdCEX (respectively, EXSpIdC) denotes the set of right (respectively, left)
ideals of EX which are generated by split idempotents.

Proof. It is enough to verify these assertions for IX because those for XI follow from
this by duality. Now if (Y, f) ∈ Sub′C(X) is a split subobject with splitting g, i.e. if
gf = 1Y , then εf,g := fg is a split idempotent of EX ([Mac], p. 20) and we have

IX(Y, f) = εf,gEX .(3)

4



Indeed, IX(Y, f) ⊂ εf,gEX because h ∈ IX(Y, f) ⇒ h = fg′, g′ ∈ Hom(Y,X) ⇒
gh = gfg′ = g′ ⇒ εf,gh = fg′ = h, so h ∈ εf,gEX . On the other hand, since
gEX ⊂ Hom(X, Y ), we have εf,gEX ⊂ fHom(X, Y ) = IX(Y, f), and so (3) follows.
From this we deduce further that

IX(Sub′C(X)) = SpIdCEX .(4)

Indeed, one inclusion follows from (3). Conversely, if εEX ∈ SpIdCEX , then ε = fg
with gf = 1Y . Thus (Y, f) ∈ Sub′C(X) and IX(Y, f) = εEX by (3), and so (4) follows.

We next observe that

(Y1, f1) ≤ (Y2, f2) ⇔ IX(Y1, f1) ⊂ IX(Y2, f2), ∀(Yi, fi) ∈ Sub′C(X).(5)

Indeed, if f1 = f2g, then IX(Y1, f1) = f2gHom(X, Y1) ⊂ f2Hom(X,Y2) = IX(Y2, f2).
Conversely, if IX(Y1, f1) = ε1EX ⊂ ε2EX = I ′X(Y2, f2), where εi = εfi,gi , then ε1 = ε2h
for some h ∈ EX and then f1 = ε1g1 = ε2hg1 = f2(g2hg1), so (Y1, f1) ≤ (Y2, f2).

From (5) it follows immediately that IX induces an order-preserving injection
IX : Sub′C(X)→ SpIdCEX which is bijection because of (4).

Remark 2.3 (a) Since the above proof did not make use of the hypothesis that C
is a preadditive category, we see that Proposition 2.2 is valid for any category C if
we define SpIdCEX := {εEX : ε ∈ E is a split idempotent}. Thus, Sub′C(X) and
Quot′C(X) are always sets.

(b) Note that the above proof gives the following description of the inverse maps:
I−1
X (εEX) ∼ (Y, f) and XI

−1(EXε) ∼ (Y, g) if ε = fg with gf = 1Y . In particular,
the equivalence classes of (Y, f) and (Y, g) do not depend on the choice of ε nor on
the choice of f, g such that ε = fg.

The above maps IX and XI are closely related to the basic representation functors
hX : C → Sets and hX : Cop → Sets defined by X. To explain this in more detail, let
us first introduce the following notation.

Notation. Let A be an additive category and X ∈ ob(A). For n ≥ 1, let Xn =
X ⊕ . . . ⊕ X denote the n-fold direct sum with injections ei = eni : X → Xn and
projections pi = pni : Xn → X, 1 ≤ i ≤ n. Furthermore, let SubX = SubX,A denote
the full subcategory of A whose objects are subobjects of Xn for some n ≥ 1, i.e.
ob(SubX) consists of all Y ∈ ob(A) which admit a monic f : Y → Xn, for sone
n. Similarly, let Quot

X
and RetX denote the full subcategories of A whose objects

are quotients and retractions of Xn for some n ≥ 1, respectively. Thus, RetX is a
subcategory of both SubX and of Quot

X
.

Proposition 2.4 (a) X is a generator of Quot
X

and a cogenerator of SubX .
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(b) The restriction of the functors hX and hX to RetX define fully faithful, additive
functors

hX : RetX → ModEX and hX : RetopX → EXMod

where ModEX and EXMod denote the categories of right and left EX-modules, respec-
tively.

Proof. (a) Let f1, f2 : Y1 → Y2, where f1 6= f2 and Y1, Y2 ∈ ob(SubX). By definition,
there is a monic g : Y2 → Xn for some n ≥ 1. Then gf1 6= gf2, and hence pni gf1 6=
pni gf2 for some i, 1 ≤ i ≤ n. Since pni g ∈ Hom(Y2, X), this proves that X is a
cogenerator of SubX in the sense of [Mac], p. 123. The proof that X is a generator
of Quot

X
is analogous.

(b) Since A is additive, it is immediate that hX : A → Sets factors over the cate-
gory ModEX of right EX-modules to yield an additive functor hX : A → ModEX ; cf.
[Sch], p. 143. (Note that hX(Y ) = HomA(X, Y ) is naturally a right EX-module,
and for any f ∈ HomA(Y1, Y2), the map hX(f) : hX(Y1) → hX(Y2) defined by
hX(f)(g) = fg is clearly EX-linear.) Similarly, the functor hX : Aop → Sets fac-
tors additively over EXMod.

By (a) we know that X is both a generator and a cogenerator of RetX , and
hence the restriction of hX and hX to RetX is faithful. To prove that hX is full, let
ϕ ∈ HomEX (hX(Y1), hX(Y2)) be EX-linear, where Y1, Y2 ∈ ob(RetX). We claim that
∃f ∈ Hom(Y1, Y2) such that hX(f) = ϕ.

For this, we first consider the case that Y1 = Xm and Y2 = Xn. Since emi ∈
hX(Y1) = Hom(X,Xm), ϕ(emi ) ∈ hX(Xn), and so ϕ(emi ) =

∑
j e

n
j fij, for some

fij ∈ EX . Then ∃!f ∈ Hom(Y1, Y2) such that pnj fe
m
i = fij, ∀i, j. Since ϕ is EX-

linear, we have ∀(x1, . . . , xm) ∈ Em
X that ϕ (

∑
emi xi) =

∑∑
enj fijxi = f (

∑
emi xi) =

hX(f) (
∑
emi xi) . Thus hX(f) = ϕ, because every g ∈ hX(Y1) has the form g =∑

emi xi.
Now assume that Y1, Y2 ∈ ob(RetX) are arbitrary, and let fi ∈ Hom(Yi, X

ni) be
such that gifi = 1Yi for some gi. For ϕ as above, define ϕ̃ : hX(Xn1) → hX(Xn2) by
ϕ̃(g) = f2ϕ(g1g), where g ∈ hX(Xn1). It is immediate that ϕ̃ is EX-linear, and so by
the above ϕ̃ = hX(f̃), for some f̃ ∈ Hom(Xn1 , Xn2). Put f = g2f̃f1 ∈ Hom(Y1, Y2).
Then hX(f) = ϕ because if g ∈ hX(Y1), then f1g ∈ hX(Xn1) and hence hX(f)(g) =
g2h̃f1g = g2ϕ̃(f1g) = g2(f2ϕ(g1f1g)) = ϕ(g). This proves that hX is fully faithful.
The proof for hX is similar.

Corollary 2.5 If (Y, f) ∈ Sub′A(X) and (Z, g) ∈ Quot′A(X), then

IX(Y, f) ' hX(Y ) and XI(Z, g) ' hX(Z),(6)

as right and left EX-modules, respectively. Moreover, for any (Y1, f1), (Y2, f2) ∈
SubA(X) we have a (functorial) isomorphism

h̃XY1,Y2
: HomA(Y1, Y2)

∼→ HomEX (IX(Y1, f1), IX(Y2, f2))
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such that h̃XY1,Y2
(f)(f1g) = f2fg, for all f ∈ Hom(Y1, Y2), g ∈ Hom(X, Y1).

Proof. Since f is monic, the map g 7→ fg induces a bijection ϕf : hX(Y )
∼→ fhX(Y ) =

IX(Y, f). Since ϕf is EX-linear, this is the desired isomorphism of right EX-modules.
Similarly, the map f 7→ fg defines an isomorphism hX(Z)

∼→ XI(Z, g) of left EX-
modules.

By Proposition 2.4(b), the map hXY1,Y1
: HomA(Y1, Y2)→ HomEX (hX(Y1), hX(Y2))

induced by hX is an isomorphism (of abelian groups), and hence the same is true for
h̃XY1,Y2

which is defined by the rule h̃XY1,Y2
(f) = ϕf2h

X
Y1,Y2

(f)ϕ−1
f1

. Thus by definition we

have h̃XY1,Y2
(f)(f1g) = ϕf2h

X
Y1,Y2

(f)(g) = ϕf2(fg) = f2fg.

Remark 2.6 If (Y1, f1), . . . , (Y1, fr) ∈ Sub′A(X), then for any s < r we have

Y1 ⊕ . . .⊕ Ys ' Ys+1 ⊕ . . .⊕ Yr ⇔(7)

I(Y1)⊕ . . .⊕ I(Ys) ' I(Ys+1)⊕ . . .⊕ I(Yr),

where I(Yi) = IX(Y, fi). (Similarly, if (Y, fi) ∈ Quot′A(X), then (7) holds with
I(Yi) = XI(Y, fi).) Indeed, put Y := Y1⊕. . .⊕Ys and Y ′ = Ys+1⊕. . .⊕Yr ∈ ob(RetX).
Since hX is fully faithful, we have Y ' Y ′ ⇔ hX(Y ) ' hX(Y ′). But since hX is
additive, we have hX(Y ) = hX(Y1)⊕ . . .⊕hX(Ys) ' I(Y1)⊕ . . .⊕ I(Ys), and similarly
hX(Y ′) ' I(Ys+1)⊕ . . .⊕ I(Yr). Thus (7) follows.

In the sequel we shall be interested the following special case of the above results.

Theorem 2.7 Let A be an additive category. If X ∈ ob(A) satisfies the conditions
that

(i) every idempotent ε ∈ EX = EndA(X) splits,

(ii) EX is a semi-simple ring,

then we have order-preserving bijections

IX : Sub′A(X)
∼→ IdEX and XI : Quot′A(X)

∼→ EXId,

and the functor hX induces an equivalence of categories hX : RetX → ModfEX between

the category RetX and the category ModfEX of finitely generated right EX-modules. In
particular, RetX is an abelian category.

Proof. Let a ∈ IdEX . Since EX is semi-simple, a = εEX is generated by an idem-
potent ε ∈ EX ([BA], p. 47). By (i), ε is split in A, and so a ∈ SpIdAEX . Thus

IdEX = SpIdAEX , and similarly EXId = EXSpIdA, so the first assertion follows from
Proposition 2.2.

To prove that hX is an equivalence, we first note that if Y ∈ ob(RetX), then hX(Y )
is a right EX-submodule of En

X for some n ≥ 1, and hence is finitely generated. Thus,
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hX maps RetX into the full subcategory ModfEX of ModEX . Since hX is fully faithful

by Proposition 2.4(b), it is enough to show that if M ∈ ob(ModfEX ) is a finitely
generated EX-module, then M ' hX(Y ), for some Y ∈ ob(RetX). Since EX is semi-
simple, M ' a1⊕ . . .⊕ ar, for some ideals a1, . . . , ar ∈ IdEX (cf. [BA], p. 47). By the
above (and Corollary 2.5) we know that there exist Y1, . . . , Yr ∈ Sub′A(X) such that
hX(Yi) ' ai, for 1 ≤ i ≤ r, and so hX(Y1⊕ . . .⊕Yr) 'M . Thus, hX is an equivalence
and hence RetX is an abelian category because ModfEX is abelian.

Remark 2.8 (a) We thus have (in the situation of Theorem 2.7) that for every
right EX-ideal a ∈ IdEX there is a unique subobject (Ya, fa) ∈ SubA(X) such that
IX(Ya, fa) = a. Moreover, by Corollary 2.5 we have a ring isomorphism

θa = (h̃XYa,Ya
)−1 : EndEX (a)

∼→ EndA(Ya)

which can be characterized by the formula faθa((λg)|a) = gfa,∀g ∈ EX with ga ⊂ a,
where λg(f) = gf , ∀f ∈ EX . [To see this, note first that for any ϕ ∈ EndEX (a) we
have h̃(θa(ϕ)) = ϕ, where h̃ = h̃XYa,Ya

, and so ϕ(fag
′) = h̃(θa(ϕ))(fag

′) = faθa(ϕ)g′,
∀g′ ∈ Hom(X, Ya). Thus, if g′ = ga satisfies gafa = 1Ya , then ϕ(ε) = faθa(ϕ)ga

where ε = faga, and hence ϕ(ε)fa = faθa(ϕ). Thus, taking ϕ = (λg)|a, we get
faθa(ϕ) = λg(ε)fa = gεfa = gfa, as claimed.]

(b) The condition (i) of Theorem 2.7 is equivalent to the condition that every
idempotent ε ∈ EX has a factorization ε = fg into a monic f and epi g, for the
condition ε2 = ε implies that fgfg = fg and so gf = 1 as f is monic and g is
epi. Thus, (i) holds in any abelian category; cf. [Mac], p. 195. It also holds in any
pseudo-abelian category (as defined in [Man]), for if ε ∈ EX is an idempotent, then
X = Ker(ε) ⊕ Ker(1 − ε) and we have ε = i2p2, where i2 : Ker(1 − ε) → X and
p2 : X → Ker(1 − ε) denote the canonical injection and projection, respectively.
Thus, the following corollary may be viewed as a sharpening of Lemma 2 of [Ja].

Corollary 2.9 If A is an additive category, then the above conditions (i) and (ii) hold
for all X ∈ ob(A) if and only if A is a semi-simple abelian category. In particular,
every monic and epi splits in such a category.

Proof. If A is abelian and semi-simple, then condition (i) holds by Remark 2.8(b) and
(ii) holds by definition.

To prove the converse, we first observe that if X, Y ∈ ob(A), then X = X1 ⊕X2,
where X1 ∈ ob(RetY ) and HomA(X2, Y ) = 0,HomA(Y,X2) = 0. Indeed, since X, Y ∈
ob(RetZ) with Z = X ⊕ Y and since RetZ is equivalent to ModfEZ by Theorem 2.7,

this observation follows from the corresponding one in ModfEZ .
Now suppose f ∈ HomA(X, Y ), where X, Y ∈ ob(A). Them f has a kernel

Ker(f) ∈ ob(RetZ), where Z = X ⊕ Y , because RetZ is abelian. By the above
observation, Ker(f) is also kernel of f in A. Similarly, f has a cokernel. In same
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way it follows that every monic (resp. epi) f : X → Y is a kernel (resp. cokernel)
because this is true in RetZ . Thus, A is an abelian category. Moreover, since EZ is
semi-simple, every monic and epi in ModfEZ splits (cf. [BA], p. 46 and 32), and so the
same is true for any monic and epi in RetZ and hence also in A.

Remark 2.10 (a) Since every map of an abelian category A has a canonical decom-
position f = im(f)coim(f) (cf. [Mac], p. 195), we have the following formula for the
inverse of IX (and that of XI):

I−1
X (fEX) = (Im(f), im(f)), XI

−1(EXf) = (Coim(f), coim(f)),(8)

for all f ∈ EX . To see this, recall that m := im(f) : Y := Im(f) → X is monic
and p := coim(f) : X → Coim(f) = Y is epi, and so there exist splittings g, h such
that gm = 1Y = ph. Then f = m(gm)p = (mg)mp = εf , where ε = mg, and ε =
m(ph)g = f(hg). Thus, fEX = εEX and so I−1

X (fEX) = I−1
X (εEX) = (Im(f), im(f)),

the latter by Remark 2.3(b). The proof for the second formula is analogous.
For later usage, let us also observe that since ker(coim(f)) = ker(f), we have

Coim(f) = X/Ker(f) with Ker(f) = I−1
X (rEX (EXf)),(9)

where rEX (a) = {g ∈ EX : ag = 0} ∈ IdEX denotes the right annihilator of a left
EX-ideal a ∈ EXId. Here, the second formula holds because by the universal property
of kernels ([Mac], p. 188) we have IX(Ker(f)) = ker(f)Hom(X,Ker(f)) = {g ∈ EX :
fg = 0} = rEX (EXf).

(b) Note that (8) implies that

hIX(Y, f) = IX(h(Y ), im(hf)), ∀h ∈ EX ,(10)

where h(Y ) = Im(hf) denotes the image of (Y, f) under h (cf. [Sch], p. 134), because
hIX(Y, f) = hεf,gEX and im(hεf,g) = im(hf). More generally, we see that each
h ∈ HomA(X,X ′) induces maps

h∗ : SubA(X)→ SubA(X ′) and h∗ : QuotA(X ′)→ QuotA(X)

by the rules h∗(Y, f) = (h(Y ), Im(hf)) and h∗(Y ′, f ′) = (Coim(f ′h), coim(f ′h)). We
then have IX′(h∗(Y, f)) = hIX(Y, f)Hom(X ′, X) and XI(h∗(Y ′, f ′)) = Hom(X ′, X)·
X′I(Y ′, f ′)h, as is easy to verify.

(c) From (10) it follows that IX(Y, f) is a two-sided EX-ideal if and only if
(Y, f) is EX-stable in the sense that im(hf) factors over f , for all h ∈ EX . In-

deed, hIX(Y, f)
(10)
= IX(Im(hf), im(hf)) ⊂ IX(Y, f) ⇔ (Im(hf), im(hf)) ≤ (Y, f) ⇔

im(hf) = fg, for some g : Im(hf)→ Y .

(d) Note that IdEX and EXId are lattices, i.e. that each collection a1, . . . , ar of
ideals has a least upper bound

∑
ai and a greatest lower bound ∩ai. Thus, by

9



Theorem 2.7 and Corollary 2.9, the same is true for SubA(X) = Sub′A(X) and
QuotA(X) = Quot′A(X). We now describe these upper and lower bounds explicitly.

As is explained in [Mac], p. 122, the greatest lower bound of (Y1, f1), . . ., (Yr, fr) ∈
SubA(X) is (∩Yi,∩fi), where ∩Yi = Y1 ×X . . .×X Yr (which exists in A by [Sch], p.
110) with canonical monic ∩fi = (f1, . . . , fr) : ∩Yi → X. Moreover, the least upper
bound is obtained by factoring the canonical map f : Y := Y1⊕ . . .⊕Yr → X (defined
by fei = fi) into f = im(f)coim(f); the image (Im(f), im(f)) ∈ SubA(X) is denoted
by
∑

(Yi, fi) = (
∑
Yi,
∑
fi). In particular, we have unique maps gi : Yi →

∑
Yi and

hi : ∩Yi → Yi such that fi = (
∑
fj)gi and fihi = ∩fi, for 1 ≤ i ≤ r. Thus:

IX

(∑
(Yi, fi)

)
=
∑

IX(Yi, fi), IX

(⋂
(Yi, fi)

)
=
⋂

IX(Yi, fi).(11)

From this we can deduce easily that

IX(Y0, f0) = IX(Y1, f1)⊕ . . .⊕ IX(Yr, fr)(12)

⇔ ∃g : Y1 ⊕ . . .⊕ Yr
∼→ Y0 such that f0gei = fi, 1 ≤ i ≤ r,

where ei : Yi → Y1 ⊕ . . .⊕ Yr denotes the ith inclusion map.
By duality, similar statements hold for QuotA(X) = SubAop(X) in place of

SubA(X). For example, if (Yi, gi) ∈ QuotA(X), 1 ≤ i ≤ r, then their least upper
bound is

∑
(Yi, gi) = (Coim(g), coim(g)), where g = (g1, . . . , gr) : X → Y1 ⊕ . . .⊕ Yr

is the unique map such that pig = gi.

(e) By using the notation in (d), we can give an alternate definition for the inverse
maps SX := I−1

X and QX := XI
−1: if a is a right (respectively, left) EX-ideal, then

I−1
X (a) =

∑
f∈a

(Im(f), im(f)) and XI
−1(a) =

∑
f∈a

(Coim(f), coim(f)).(13)

Indeed, since each a ∈ IdEX has the form a = εEX (cf. proof of Theorem 2.7), we have
by (8) that I−1

X (a) = (Im(ε), im(ε)) =
∑

f∈a(Im(f), im(f)), and the second formula is
proved similarly.

Example 2.11 Let k be a semi-simple ring, and let A = kModf be the (abelian)
category of finitely generated left k-modules. Then Corollary 2.9 shows that A is a
semi-simple abelian category because for every M ∈ ob(A) the ring EM = Endk(M)
is semi-simple by [BA], p. 47.

In addition, from Theorem 2.7 and Remark 2.10(e), (a) we see that the maps
SM : a 7→ aM =

∑
f∈a Im(f) and QM : a 7→ M/rEM (a)M induce order-preserving

bijections

SM : IdEM
∼→ Subk(M) = Sub′k(M) and QM : EM Id

∼→ Quotk(M) = Quot′k(M),
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where Subk(M) = SubA(M) and Subk(M) = QuotA(M) denote the sets of k-
submodules and k-quotients of M , respectively.

Furthermore, if M is a faithful k-module, then k ⊂Mn for some n > 0 (by [BA],
p. 26) and so RetM = kModf (because every M ′ ∈ kModf is isomorphic to a (finite)
direct sum of ideals of k). Thus, by Theorem 2.7 we see that the functor hM induces
an equivalence of categories hM : kModf → ModfEM = EopM

Modf . Note that since each

M ′ ∈ ob(A) is projective, we have hM 'M∗⊗k ∗, i.e. hM is equivalent to the Morita
functor of [CR], p. 60.

In order to be able to apply the above results to the Shimura construction, it is
useful to extend Theorem 2.7 as follows.

Theorem 2.12 In the situation of Theorem 2.7, suppose that M is a faithful left
EX-module, and put ẼX = EndEX (M). Then the rule (Y, f) 7→ IX(Y, f)M defines
an order-preserving bijection

SX,M : Sub′A(X)
∼→ AlgEX (M)

where AlgEX (M) = {aM : a ∈ EX} ⊂ SubẼX (M). Moreover, if M is a finitely
generated EX-module, then AlgEX (M) = SubẼX (M), and we have an equivalence of
categories

hX,M := hX ⊗EX M : RetX → ẼX
Modf

with the property that hX,M(Y ) ' SX,M(Y, f), for all (Y, f) ∈ SubA(X). In partic-
ular, for every N ∈ SubẼX (M) there is a unique (YN , fN) ∈ SubA(X) such that
SX,M(YN , fN) = N and we have a ring isomorphism

θN : EndẼX (N)
∼→ EndA(YN)

such that fNθN((λg)|N) = gfN ,∀g ∈ EX with gN ⊂ N , where λg(x) = gx, ∀x ∈M .

Proof. Since EX is semi-simple and M is faithful, it follows that M is a faithfully
flat EX-module. (Use Exercise 1 of [BCA], p. 49). Thus, the map a 7→ aM defines
an (order-preserving) injection µM : IdEX ↪→ SubẼX (M). (Here we use the obvious

fact that each aM is a left ẼX-submodule of M .) It thus follows from Theorem
2.7 that the map SX,M = µM ◦ IX is an order-preserving bijection onto its image
Alg(M) := Im(SX,M) ⊂ SubẼX (M). Note that Alg(M) = AlgEX (M) because
IX(Y, f) = εEX for some (idempotent) ε ∈ EX and then SX,M(Y, f) = εM .

Now suppose that M is finitely generated. Then ẼX is again semi-simple ([BA],
p. 47) and EẼX ' EX ([BA], p. 50). Thus, by Example 2.11 it follows that the map
SM = µM : IdEX → SubẼX (M) is a bijection, and so AlgEX (M) = SubẼX (M). Fur-
thermore, since M is faithful and projective, it follows from Morita’s Theorem ([CR],
p. 60) that the functor ∗ ⊗EX M : ModfEX → Modf

ẼopX
= ẼX

Modf is an equivalence

11



of categories, and so it follows from Theorem 2.7 that hX,M := (∗ ⊗EX M) ◦ hX is
also an equivalence. Moreover, since M is EX-flat, we have by Corollary 2.5 that
SX,M(Y, f) = IX(Y, f)M ' IX(Y, f)⊗EX M ' hX(Y )⊗EX M = hX,M(Y ).

Finally, if N ∈ SubẼX (M), then the existence and uniqueness of (YN , fN) is
clear since SX,M is a bijection. Moreover, since N = aM ' aEXM , for some (unique)
a ∈ IdEX , we see from Remark 2.8(a) that θN = θa⊗EXM is the desired isomorphism.

As we shall see in section 5, the following corollary can be viewed as an abstract
version of the Shimura construction.

Corollary 2.13 In the situation of Theorem 2.12, suppose that M is finitely gen-
erated and that there is a commutative subring T ⊂ EX such that M is a free T -
module of rank 1. Then for every T -submodule N ⊂ M there is a unique subobject
(YN , fN) ∈ SubA(X) such that SX,M(YN , fN) = N and we have a natural ring em-
bedding

θ′N : EndT (N) ↪→ EndA(YN)

such that fNθN((λt)|N) = tfN , for all t ∈ T .

Proof. Since M is a free T -module of rank 1, we have EndT (M) = TM , where TM
denotes the image of T in End(M). Thus ẼX = EndEX (M) ⊂ EndT (M) = TM , and
so every T -submodule N of M is a fortiori an ẼX-submodule. Thus, the assertions
follow directly from Theorem 2.12, if we let θ′N be the restriction of θN to EndT (N) ⊂
EndẼX (N).

In practice, most examples of EX-modules arise via additive functors in the fol-
lowing way.

Corollary 2.14 Let A be a semi-simple abelian category and let k be any ring. If
F : A → kMod is a faithful additive functor, then for every X ∈ ob(A) the map FX
induces an order-preserving bijection

FX = SX,F (X) : SubA(X)
∼→ AlgF (F (X)),

where AlgF (F (X)) = {Im(F (a)) : a ∈ EX} ⊂ SubẼX (F (X)). Moreover, the inverse

of FX is given by F
−1

X (Im(F (a))) = (Im(a), im(a)).

Proof. By functoriality, the rule a 7→ F (a) defines a ring homomorphism ρX,F : EX →
Endk(F (X)) which is injective since F is faithful. Thus, M = F (X) is a faithful left
EX-module via ρX,F , and so SX,F (X) : SubA(X)

∼→ AlgEX (F (X)) is a bijection by
Theorem 2.12. Since IX(Y, f) = fgEX , where g ∈ Hom(X, Y ) satisfies gf = 1Y , we
see that

SX,F (X)(Y, f) = F (fg)F (X) = Im(F (f)F (g)) = Im(F (f)).(14)

12



Here the last equality holds because F (g) is a retract (and hence is surjective).
We thus see that FX(Y, f) := (F (Y ), F (f)) ∼ Im(F (f)) = SX,F (X)(Y, f) and that
AlgF (F (X)) = AlgEX (F (X)) ⊂ SubẼX (F (X)). Finally, it is clear from (14) that

S−1
X,F (X)(Im(F (a))) = (Im(a), im(a)).

On the other hand, contravariant functors can also be used in the following
mannner.

Corollary 2.15 If A is a semi-simple abelian category and G : Aop → kMod is
a faithful (contravariant) additive functor, then for every X ∈ ob(A) the map GX

defines an order-preserving bijection

QX,G := GX : QuotA(X) = SubAop(X)
∼→ AlgG(G(X)) = {Im(G(a)) : a ∈ End(A)},

and QX,G(Y, p) = G(X)XI(Y, p) = Im(G(p)), for any (Y, p) ∈ QuotA(X). Moreover,
if G(X) is a finitely generated EX-module, then AlgG(G(X)) = EndẼX (G(X)), where

ẼX = EndEX (G(X)) = {f ∈ End(G(X)) : fG(a) = G(a)f,∀a ∈ EX}. Thus, for
each (left) ẼX-module W ⊂ G(A), there is a unique (ZW , pW ) ∈ QuotA(X) such
that Im(G(pW )) = W , and we have Ker(pW ) = I−1

X (rEX (W )).

Proof. Since Aop is again a semi-simple abelian category, the first assertion is clear
from Corollary 2.14, and the second follows from equation (14) together with the
fact that QX,G(Y, p) = SX,G(X)(Y, p

op). Moreover, since G(X) is naturally a left Eop
X -

module or, equivalently, a right EX-module, the third assertion follows from Theorem
2.12. To prove the last assertion, put ε = fpW , where pWf = 1ZW . Then W = G(X)ε
and rEX (W ) = rEX (EXε) = (1 − ε)EX , and hence (ZW , pW ) = (Coim(ε), coim(ε)).
Thus, by (9) we have I−1

X (rEX (W )) = Ker(ε) = Ker(pW ), as claimed.

3 Subvarieties and Quotients of an Abelian Vari-

ety

As in the introduction, fix an arbitrary ground field K and let A/K be an abelian
variety defined over K. Throughout, we shall freely use the basic facts about abelian
varieties as presented in Milne[Mi] and Mumford[Mu].

Notation. Let Sub(A/K) denote the set of abelian subvarieties B of A/K in the
usual sense, i.e. B is an abelian variety over K together with a closed immersion jB :
B ↪→ A which is a K-homomorphism of abelian varieties. Since closed immersions are
monics in the category VarK of K-varieties, they are also monics in the subcategory
AbK of abelian varieties over K with K-homomorphisms, and so we have an inclusion
Sub(A/K) ⊂ SubAbK

(A). However, these sets are rarely equal, as we shall see; cf.
Remark 3.2(a).
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Similarly, let Quot(A/K) ⊂ QuotAbK
(A) denote the set of equivalence classes

of abelian quotients (C, p) of A; the latter means that p : A → C is a surjective
K-homomorphism such that its (schematic) kernel Ker(p) is an abelian variety.

Furthermore, let Ab0
K denote the category of abelian K-varieties up to isogeny (cf.

[Mu], p. 172): we have ob(Ab0
K) = ob(AbK) and HomAb0

K
(A,B) = Hom0(A,B) :=

Hom(A,B) ⊗ Q. Thus, since Hom(A,B) is torsionfree (cf. [Mi], p. 122), AbK is
naturally a subcategory of Ab0

K . We observe:

Proposition 3.1 Ab0
K is a semi-simple abelian category, and the embedding iK :

AbK → Ab0
K induces bijections

iK,A : Sub(A/K)
∼→ SubAb0

K
(A) = Sub′Ab0

K
(A),

AiK : Quot(A/K)
∼→ QuotAb0

K
(A) = Quot′Ab0

K
(A).

Proof. The first assertion is well-known, but we shall give a quick proof below using
Corollary 2.9. For this, we first observe that

f ∈ Hom(A,B) is a monic ⇔ iK(f) is a monic in Ab0
K(15)

(and similarly for “monic” replaced by “epi”). Indeed, since iK is an embedding
(hence faithful), iK(f) monic (epi) ⇒ f monic (epi). Conversely, if f is monic and
iK(f)g = iK(f)h with h, g ∈ Hom0(C,A), then ∃n > 0 such that g[n]C = iK(g′) and
h[n]C = iK(h′) with g′, h′ ∈ Hom(C,A), where [n]C denotes the mulipication by n
map on C. Then fg′ = fh′, so g′ = h′ and hence g[n]C = h[n]C . Thus g = h because
[n]C is an isomorphism in Ab0

K , and so f is monic. The proof for epis is similar.
Now since every map in AbK factors as f = gh where h is a surjection (hence epi)

and g is a closed immersion (hence monic), it follows from (15) that every map in
Ab0

K factors as f = gh with g monic, h epi. Thus condition (i) of Theorem 2.7 holds;
cf. Remark 2.8(b). Moreover, Ab0

K is clearly an additive category, and condition
(ii) holds for every A ∈ ob(Ab0

K) by [Mi], p. 122. Thus, by Corollary 2.9 we see
that Ab0

K is a semi-simple abelian category and that SubAb0
K

(A) = Sub′Ab0
K

(A) and

QuotAb0
K

(A) = Quot′Ab0
K

(A), for every A. By (15) we see that the rule (B, jB) 7→
(iK(B), iK(jB)) defines a map iK,A : Sub(A/K)→ SubAb0

K
(A) and similarly we have

a map AiK : Quot(A/K)→ QuotAb0
K

(A).
To see that iK,A is injective, suppose that iK,A(B, jB) = iK,A(B′, jB′), i.e. that

iK(jB) = iK(jB′)h, for some isomorphism h : iK(B)
∼→ iK(B′). Then ∃n > 0 such

that h[n]B = iK(h′), for some isogeny h′ : B → B′, and so jB[n]B = jB′h
′[n]B, or

jB = jB′h
′ since [n]B is epi. But since Ker(jB) = 0, it follows that Ker(h′) = 0, and

so h′ : B
∼→ B′ is an isomorphism. Thus (B, jB) ∼ (B′, j′B), i.e. iK,A is injective.

It remains to show that iK,A is surjective. Let (B, f) ∈ Sub′Ab0
K

(A), and let g

be such that gf = 1B. Then ∃n > 0 such that fn = iK(f ′), gn = iK(g′) with
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f ′ ∈ Hom(B,A), g′ ∈ Hom(A,B), and so g′f ′ = [n2]B. Thus, f ′ has finite kernel and
and so there exists an isogeny π : B → B′ = B/Ker(f) such that f ′ = f ′′π, where
f ′′ : B′ → A is a closed immersion (use [Mu], p. 118). Thus (B′, f ′′) ∈ Sub(A/K)
and iK,A(B′, f ′′) ∼ (B, f) because iK(f ′′)iK(π) = f [n]B (and iK(π) and [n]B are
isomorphisms in Ab0

K . Thus iK,A is surjective.
The proof for AiK is entirely analogous. Alternately, we can deduce it directly

from what was proved above by observing that the duality functor DK : AbopK → AbK
defined by D(A) = Â, D(f) = f̂ induces for every A/K an order-reversing bijection

DK,A : QuotAbK
(A) = SubAbopK

(A)
∼→ SubAbK

(Â).(16)

Indeed, the latter assertion is equivalent to the well-known fact (cf. [La], p. 216) that
if p : A→ C is any homomorphism of abelian varieties, then p is an abelian quotient
⇔ p̂ : Ĉ → Â is a closed immersion.

Remark 3.2 (a) From the above proof we see that f : A→ B is a monic in AbK if
and only if f = f0g, where (A′, f0) ∈ Sub(B/K) and g : A→ A′ is an isogeny. Thus
f is monic if and only if Ker(f) is finite. Similarly, f is epi in AbK if and only if
f = gf0, where (C, f0) ∈ Quot(A/K) and g : C → B is an isogeny; for later reference
let us write (B, f)0 := (C, f0). Thus, f is epi if and only if f is surjective.

(b) Since Ab0
K is an abelian category, every f ∈ Hom0(A,B) has a canonical

factorization f = jhp where j : Im(f) → B is a monic, p : A → Coim(f) is epi and
h : Coim(f)

∼→ Im(f) is an isomorphism. Thus, by (a), every f ∈ Hom(A,B) has
a canonical factorization f = jhp where j is a closed immersion (and Im(f) is an
abelian subvariety of B), p : A → Coim(f) = A/Ker(p) is an abelian quotient and
h : Coim(f)→ Im(f) is an isogeny.

We are now ready to prove Theorem 1.1 of the introduction, as well as a dual
version. More precisely, we shall prove the following result.

Theorem 3.3 Let A/K be an abelian variety and put E = End0(A). Then the
maps B 7→ I(B) := jBHom0(A,B) = {f ∈ E : Imf ⊂ B} and (C, p) 7→ I ′(C) =
Hom0(C,A)p define lattice-preserving bijections

IA/K : Sub(A/K)
∼→ IdE and I ′A/K : Quot(A/K)

∼→ EId

whose inverses are given by I−1
A/K(a) = aA :=

∑
f∈a Im(f) and by I ′−1

A/K(a) = (Ca, pa),

respectively. Here Ca = A/rE(a)A, where rE(a) = {f ∈ E : af = 0} is the right
annihilator of a, and pa : A → Ca is the quotient map. Furthermore, the functor hA

induces an equivalence of categories

hA : Sub0
A/K = Quot0

A/K

∼→ Modf
E
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where Sub0
A/K (respectively, Quot0

A/K
) is the full subcategory of Ab0

K consisting of

those abelian varieties which are isogenous to a subvariety (respectively, to a quotient)
of An, for some n ≥ 1. In particular, for any B1, B2 ∈ Sub(A/K) and C1, C2 ∈
Quot(A/K) we have functorial isomorphisms

Hom0(B1, B2)
∼→ HomE(I(B1), I(B2)), Hom0(C1, C2)

∼→ HomE(I ′(C2), I ′(C2)).

Proof. Put IA/K := IA ◦ iA,K and I ′A/K = AI ◦ AiK , so by definition IA/K(B) =

jBHom0(A,B) and I ′A/K(C, p) = Hom0(A,C)p, for B ∈ Sub(A/K) and (C, p) ∈
Quot(A/K). Note that IA/K(B) = {f ∈ E : Imf ⊂ B = Im(jB)} by the universal
property of an image (viewed as a kernel). From Proposition 3.1 and Theorem 2.7
(with A = Ab0

K) we see that IA/K and I ′A/K are order-preserving bijections and

that hA is an equivalence of categories. (Note that since Ab0
K is semi-simple, we

have Sub0
A/K = Quot0

A/K
= Ret0

A/K by Corollary 2.9.) Moreover, by Remark 2.10(e)

together with formula (9) we see that the inverses are given by the indicated formulae.
The last assertion is an immediate consequence of Corollary 2.5.

Remark 3.4 (a) The above results give a new proof of Theorem A of [KR], which
may stated as follows: if B1, . . . , Br ∈ Sub(A/K) and s < r, then

B1 × . . .×Bs ∼ Bs+1 × . . .×Br ⇔ I(B1)⊕ . . . I(Bs) ' I(Bs+1)⊕ . . .⊕ I(Br).(17)

Indeed, via Proposition 3.1, this is just a restatement of (7). [To see that (17) is
equivalent to Theorem A, note that Bi = Im(εi) = εi(A), for some idempotents
εi ∈ E (cf. (3)), and then I(Bi) = εjE. Since ε1E⊕ . . .⊕ εsE ' εs+1E⊕ . . .⊕ εrE⇔
ε1 + . . .+ εs ∼ εs+1 + . . .+ εr, the equivalence of (17) and Theorem A is clear.]

(b) Recall from Remark 3.2(b) that each f ∈ End(A) has a factorization f = jhp,
where h : C → B is an isogeny, (B, j) ∈ Sub(A/K), and (C, p) ∈ Quot(A/K). It
then follows from (8) that IA/K(B) = fE and I ′A/K(C, p) = Ef .

(c) Note that it follows from Proposition 3.1 that each closed immersion jB : B →
A is split in Ab0

K , i.e. that ∃h : A → B such that hjB is an isogeny. Such a map
can be chosen canonically if we fix a polarization λ = λL : A → Â. Indeed, let
λB := ĵBλh = λj∗BL : B → B̂ denote the induced polarization on B. Then there
exists a unique λ′B such that λ′BλB = [n]B, for some (minimal) n = nB > 0, and
NB,λ := λ′B(jB)ˆλ : A → B satisfies NB,λjB = [nB]. Thus εB,λ := 1

nB
NB,λjB is a

canonical generator of I(B) = εB,λE.

Using Remark 3.4(c), we see that the above theorem implies the following result
of Lange[Lan] (cf. [LB], p. 126, for the case K = C).
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Corollary 3.5 (Lange) Fix a polarization λ : A → Â. Then the map B 7→ εB,λ
defines a bijection

Sub(A/K)
∼→ SymId(E) := {symmetric idempotents of E}

between the set of abelian subvarieties of A/K and the set SymId(E) of idempotents
ε ∈ E = End0(A) which are symmetric with respect to the Rosati involution a 7→ a∗ =
λ−1 ◦ â ◦ λ on E.

Proof. We first show that εB,λ is symmetric. Indeed, since λ and λB = ĵBλh are

polarizations, we have that λ̂κA = λ and λ̂BκB = λB, where κA : A
∼→ ˆ̂

A and

κB : B
∼→ ˆ̂
B are the canonical identifications. Thus (λ′B)ˆ = κBλ

′
B and p̂BκB =

λ̂ˆ̂jBκB = λ̂κAjB = λjB. From this we obtain that eB ε̂Bλ = N̂B ĵBλ = N̂BpB =
p̂B(λ′B)ˆpB = p̂BκBλ

′
BpB = λjBNB = eBλεB, i.e. that ε∗B = εB, as claimed.

In view of Theorem 1.1 (or Theorem 3.3) it is therefore enough to show:

Each right E-ideal a is generated by a unique symmetric idempotent.

To prove this, note first that it is enough to verify the uniqueness assertion because
by Theorem 1.1 and Remark 3.4(c) we know that a = εB,λE for some B ∈ Sub(A/K).
To prove uniqueness, let ε1, ε2 ∈ SymId(E) be such that ε1E = ε2E. Then (1 −
ε2)ε1E = (1 − ε2)ε2E = 0, so ε2ε1 = ε1, and similarly ε1ε2 = ε2. Since ε1 and ε2 are
symmetric, we have from the second equation that ε2ε1 = ε∗2ε

∗
1 = (ε1ε2)∗ = ε∗2 = ε2,

and hence ε1 = ε2ε1 = ε2.

Corollary 3.6 Let (C, p) be an abelian quotient of A and let a = I ′A/K(C, p) be its
associated left E-ideal. Let B ⊂ A be the subvariety corresponding to the right E-ideal
a∗ which is the image of a with respect to the Rosati involution ∗ of A (associated to
a polarization λ : A→ Â). Then p|B : B → C is an isogeny.

Proof. By Corollary 3.5 we have a∗ = εB,λE, so a = a∗∗ = Eε∗B,λ = EεB,λ since
εB,λ is symmetric. With the notation of Remark 3.4(c), write NB,λ = hp′ where
(C ′, p′) ∈ Quot(A/K) and h : C ′ → B is an isogeny. By Remark 3.4(b) we have
I ′(C ′, p′) = EεB,λ = I ′(C, p), and hence by Theorem 3.3 there exists an isomorphism
f : C

∼→ C ′ such that p′ = fp. Thus hfpjB = hp′jB = NB,λjB = [nB] is an isogeny,
and hence so is p|B = pjB.

4 Algebraic Subspaces of E-Modules

As before, let A/K be an abelian variety and E = End0(A). If V is any faithful
left E-module, then the results of the previous sections show that we have a canon-
ical bijection between the set Sub(A) of abelian subvarieties of A/K and the set
Alg

E
(V ) = {aV : a ∈ E} of algebraic subspaces of V . More precisely:
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Theorem 4.1 If V is a faithful left E-module, then the map B 7→ IA/K(B)V induces
an order-preserving bijection

SA/K,V : Sub(A/K)
∼→ Alg

E
(V ).

Moreover, if V is also finitely generated, then Alg
E
(V ) = End

Ẽ
(V ), where Ẽ =

EndE(V ), and hence for each left Ẽ-submodule W ⊂ V there is a unique abelian
subvariety BW ⊂ A such that SA/K,V (BW ) = W , and we have a ring isomorphism

θW : End
Ẽ
(W )

∼→ End0(BW )

such that jBθW ((λf )|W ) = f|BW , for all f ∈ E with f(W ) ⊂ W .

Proof. This follows immediately from Theorem 2.12 and Proposition 3.1 by putting
SA/K,V = SA,V ◦ iA,K .

Most of the interesting examples of faithful E-modules arise from faithful (covari-
ant) functors in the following way.

Corollary 4.2 If F : AbK → Veck is a faithful functor, where Veck is the category
of (finite dimensional) vector spaces over some field k, then for every abelian variety
A/K the map B 7→ F (B) induces an order preserving bijection

SA/K,F : Sub(A/K)
∼→ Alg(F (A)) = {Im(F (a)) : a ∈ End(A)}.

Moreover, if k is a finite extension of Q, then Alg(F (A)) = End
Ẽ
(F (A)), where

Ẽ = EndE(F (A)).

Proof. Since F is faithful, it follows that char(k) = 0 and so F extends uniquely to
a (faithful) functor F : Ab0

K → Veck. Thus, the first assertion follows immediately
from Corollary 2.14. (Note that if a ∈ E, then na ∈ End(A) for some n > 0 and
then Im(F (a)) = Im(F (na)) and hence Alg(F (A)) = AlgF (F (A)).) Moreover, if
k is a finite extension of Q, then F (A) is a finitely generated E-module, and hence
Alg(F (A)) = End

Ẽ
(F (A)) by Theorem 2.12.

Some examples of functors satisfying the above hypotheses are the following.

Example 4.3 (a) (Homology functor) Suppose that K ⊂ C. Then we can view
AC := A⊗K C as a complex analytic space, and so homology theory yields a faithful
functor H1 : AbK → Vec

Q
which is defined by H1(A) = H1(Aan

C
,Q); cf. [Mu], p. 176.

Note that dimQH1(A) = 2 dim(A).

(b) (Tangent space functor) Suppose that char(K) = 0. Then the tangent
space T0(A) of A at the origin is a K-vector space of dimension d = dim(A), and we
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obtain a faithful functor T0 : AbK → VecK . (To see that T0 is faithful, reduce to the
case K = C and use [Mu], p. 176(top).)

(c) (Tate module functor) Let K be any field and fix a prime ` 6= char(K).
For any abelian variety A/K, its Tate module T`(A) := T`(A⊗K) a free Z`-module
of rank 2d and so T 0

` (A) = T` ⊗ Q` is a Q`-vector space of dimension 2d. Moreover,
the induced functor T 0

` : AbK → Vec
Q`

is faithful by [Mu], p. 176ff.

Proof of Corollary 1.3. By hypothesis, HomT(T ∗0 (A), T0(A)) = Tϕ because T0(A)∗ '
T0(A) ' T as T-modules. Thus, if ϕ′ is another isomorphism, then ϕ′ = tϕ with
t ∈ T× and so ϕ′(W ) = ϕ(tW ) = ϕ(W ). This proves the first assertion. Moreover, by
Example 4.3(b), the tangent space functor T0 satisfies the hypotheses of Corollaries
4.2 and Corollary 2.13, and so the second assertion follows. Finally, we note that
dimQW = dimQ T0(BW ) = dimBW , as asserted.

For contravariant functors, we have the following dual version of Corollary 4.2.

Corollary 4.4 If G : AbopK → Veck is a faithful, contravariant functor, then for each
abelian variety A/K the map (C, p) 7→ G(A)I ′(C, p) = Im(G(p)) ⊂ G(A) defines an
order preserving bijection

QG = QA/K,G : Quot(A/K)
∼→ Alg(G(A)) = {Im(G(a)) : a ∈ End(A)}.

Moreover, if k is a finite extension of Q, then Alg(F (A)) = End
Ẽ
(F (A)), where

Ẽ = EndE(G(A)) = {f ∈ End(G(A)) : fG(a) = G(a)f,∀a ∈ E}. Thus, for each
(left) Ẽ-module W ⊂ G(A), there is a unique (CW , pW ) ∈ Quot(A/K) such that
Im(G(pW )) = W , and we have Ker(pW ) = rE(W )A.

Proof. Using the same reasoning as in the proof of Corollary 4.2, we see that these
assertions follow immediately from Corollary 2.15.

The following are examples of such functors.

Example 4.5 (a) (Duals of covariant functors) Let Dk : Veck
∼→ Vecopk denote

the (contravariant) duality functor defined by Dk(V ) = V ∗ = Hom(V, k). Clearly, if
F : AbK → Veck is any faithful covariant functor, then its “dual” F ∗ = Dk ◦ F :
AbK → Vecopk is a faithful contravariant functor. In particular, the duals of the
functors H1, T0 and T 0

` considered in Example 4.3 are faithful and are called the
cohomology functor H1 = (H1)∗, the cotangent functor T ∗0 = (T0)∗ and the étale
cohomology functor H1

et(·,Q`) = (T 0
` (·))∗, respectively.

(b) (The functor of holomorphic differentials) Let char(K) = 0 and let
Ω : AbopK → VecK denote the functor of holomorphic differentials defined by Ω(A) =
H0(A,Ω1

A/K). Since the (restriction) map ω 7→ ω0 ∈ T ∗0 (A) defines an isomorphism
of functors Ω ' T ∗0 , this functor is again faithful.

19



Proof of Theorem 1.4. The first assertion follows from Corollary 4.4 because the
functor Ω satisfies the required hypotheses by Example 4.5(b). The second asser-
tion follows from Corollary 2.14. Finally, since p∗W : Ω(CW ) → Ω(A) is injective
(cf. Remark 4.6), we have dimCW = dimK Ω(CW ) = dimK p

∗
WΩ(CW ) = dimW , as

claimed.

Remark 4.6 Let G : AbopK → Veck be as in Corollary 4.4, and let f : A → A′ be
a homomorphism of abelian varieties. If f is surjective, then f is a split epi in Ab0

K

(cf. Proposition 3.1) and hence G(f) : G(A′) → G(A) is injective because G maps
split epis in Ab0

K to monics in Veck. (Similarly, if f has finite kernel, then G(f) is
surjective, and if f is an isogeny, then G(f) is bijective.) Thus, G(f) induces an
injection G(f) : Subk(G(A′)) ↪→ Subk(G(A)) which maps algebraic subspaces to
algebraic subspaces because we have

G(f)(QG(C ′, p′)) = QG((C ′, p′f)0), for all (C ′, p′) ∈ Quot(A′/K).(18)

Indeed, if we write (C, p) := (C ′, p′f)0 ∈ Quot(A/K) (cf. Remark 3.2(a)), then there
is an isogeny g : C → C ′ such that gp = p′f , and we have G(f)(QG(C ′, p′)) =
G(f)(Im(G(p′))) = Im(G(p′f)) = Im(G(p)G(g)) = Im(G(p)) = QG((C ′, p′f)0) be-
cause G(g) is bijective.

The following corollary is frequently useful in applications.

Corollary 4.7 If (C, p), (C1, p1), . . . , (Cn, pn) ∈ Quot(A/K) are abelian quotients
such that QG(C, p) =

∑
QG(Ci, pi), where G is as in Corollary 4.4, then there is a

unique homomorphism ν : C → C1×. . .×Cn with finite kernel such that (p1, . . . , pn) =
ν ◦ p. Furthermore, ν is an isogeny if and only if the sum of the QG(Ci, pi)’s is a
direct sum.

Proof. Since QG is a lattice isomorphism by Corollary 4.4, it follows from the hy-
pothesis that (C, p) is the maximum of the (Ci, pi)’s, and so the first assertion follows
from Remark 2.10(d). Moreover, since QG(Ci, pi) = QG(A)I ′(Ci, pi) and since G(A)
is a faithfully flat E-module (cf. proof of Theorem 2.12), we see that the sum of the
QG(Ci, pi)’s is a direct sum if and only if the I ′(Ci, pi)’s are a direct sum, and so the
assertion follows immediately from (the dual version of) (12).

5 Applications to Modular Curves

Let XΓ,C = Γ\H∗ be the complex modular curve attached to a subgroup Γ ≤ SL2(Z)
of level N ≥ 1, i.e. Γ0(N) ≤ Γ ≤ Γ1(N). (We could also take Γ = Γ(N).) By
Shimura[Sh1], XΓ,C has a “canonical” model X = XΓ/Q over Q such that the map
f 7→ fdz induces a natural identification S2(Γ,Q)

∼→ H0(X,Ω1
X/Q) where S2(Γ,Q) ⊂
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S2(Γ) denotes the subspace of all cusp forms of weight 2 on Γ whose Fourier expansion
(at the cusp ∞) have rational coefficients; cf. [Sh1], p. 156 and p. 140 or [DDT], p.
35. Thus, if J = JΓ/Q denotes the Jacobian variety of XΓ, then we have a canonical
identification

Ω(J) := H0(J,Ω1
J/Q) = H0(X,Ω1

X/Q) = S2(Γ,Q).

By Hecke’s theory, there is a commutative subring (called the Hecke algebra)
T = Q[{Tn}n≥1] ⊂ E = End0

Q
(J) such that S2(Γ,Q)∗ ' T0(J) is a free T-module of

rank 1; cf. [Sh1], Theorem 3.51 or [DDT], Lemma 1.34. Furthermore, Ω(J) = S2(Γ,Q)
is also a free T-module of rank 1, as can be seen either from [Sh1], Theorem 3.51
or by Atkin-Lehner Theory (cf. [DDT], Lemma 1.35), and so there is a T-module
isomorphism ϕ : Ω(J)

∼→ T0(J). We then have the following generalization of the
Shimura construction:

Theorem 5.1 Let W ⊂ S2(Γ,Q) be any T-submodule. Then:

(a) There exists a unique abelian quotient (AW , pW ) ∈ Quot(JΓ) such that p∗WΩ(AW ) =
W . Furthermore, dimAW = dimQW and we have an injective ring homomorphism
θW : EndT(W ) ↪→ End0

Q
(AW ) such that θW (t|W ) ◦ pW = pW ◦ t, for all t ∈ T.

(b) Fix a T-module isomorphism ϕ : S2(Γ,Q)
∼→ T0(J). Then ϕ(W ) does not

depend on the choice of ϕ, and there exists a unique abelian subvariety A′W ∈ Sub(JΓ)
such that ϕΓ(W ) = T0(A′W ) ⊂ T0(J). Furthermore, dimA′W = dimQW and there
exists a ring injection θ′W : EndT(W ) ↪→ End0(A′W ) such that θ′W (t|W ) = t|A′W , for all
t ∈ T.

(c) The restriction p′W = (pW )|A′W : A′W → AW of pW to A′W is an isogeny provided

that (W ⊗ C)|wn = W ⊗ C, where wN =
(

0 −1
N 0

)
.

Proof. (a) By the above discussion, this follows immediately from Theorem 1.4.
(b) Via the identification S2(Γ,Q) = T0(J)∗, all assertions except the last follow

from Corollary 1.3. The last assertion follows from Corollary 2.14.
(c) Since W is an Ẽ-module, we have by Corollary 4.4 that W = Ω(J)a for some

left ideal a of E. Since wN induces an automorphism of Ω(J ⊗ C), the hypothesis
implies that Ω(J ⊗C)w−1

N awN = Ω(J ⊗C)a. Thus, since w−1
N awN is a left ideal of E

(cf. Lemma 5.2 below), it follows that w−1
N awN = a. Thus, using the map ϕ of Lemma

5.2, we have by (19) that ϕ(W ) = ϕ(Ω(J)wNaw−1
N ) = a∗T0(J) (because w∗N = w−1

N ).
This shows that ϕ(W ) = a∗T0(J), and so the assertion follows from Corollary 3.6.

Lemma 5.2 The map α 7→ w−1
N αwN defines an automorphism of E = End0

Q
(J).

Thus, if α 7→ α∗ denotes the Rosati involution on E induced by the canonical polar-
ization of J , then there exists a T-module isomorphism ϕ : S2(Γ,Q)

∼→ T0(J) such
that

ϕ(fα) = (w−1
N α∗wn)ϕ(f), for all f ∈ S2(Γ,Q), α ∈ E.(19)
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Proof. We first verify that w−1
N αwn ∈ E, if α ∈ E. For this we observe that the

automorphism wN is defined over K := Q(ζN) and satisfies wτaN = wNσ
−1
a , where

τa ∈ Gal(K/Q) is given by ζτaN = ζaN and σa ≡
(
a−1 0

0 a

)
(modN). Since σa ∈ T′

is in the centre of E (cf. [Ka], Corollary 2), it follows that w−1
N αwn ∈ End0

K(J) is
τa-invariant and hence lies in E.

It thus follows that T0(J) becomes a right E-module via the rule vα = (w−1
N α∗wN)v

(for v ∈ T0(J)). Moreover, T0(J) is a faithful right E-module under this twisted action
because T0(J) is a faithful left E-module under the usual action. Thus, since E is
semisimple, it follows that every irreducible E-module apears at least once in the
decomposition of T0(J) into irreducible submodules. Now since Ω(J) = S2(Γ,Q) is
also faithful right E-module, the same is true for Ω(J). Moreover, since EndE(Ω(J)) ⊂
EndT(Ω(J)) = T is commutative, it follows that every irreducible E-module appears
only once in the E-module decomposition of Ω(J), and so we see that we have an E-
module embedding ϕ : Ω(J)→ T0(J), which is an isomorphism because dim Ω(J) =
dimT0(J). Moreover, since w−1

N twN = t∗, for all t ∈ T, it follows that twisted action
of T on T0(J) is the same as the usual action of T on T0(J). In particular, ϕ is a
T-module isomorphism satisfying (19).

The classical Shimura construction is the following special case of the above the-
orem.

Example 5.3 (Shimura) Let f ∈ S2(Γ) be a (normalized) T-eigenfunction, and
put Wf,C =

∑
Cfσ, where the sum is over all Aut(C)-conjugates of f . Clearly,

Wf,C is Aut(C)-invariant and hence is of the form Wf,C = Wf ⊗ C for a unique
subspace Wf ⊂ S2(Γ,Q). Moreover, dimQWf = dimCWf,C = [Kf : Q], where Kf

is the field generated by the Fourier coefficients an(f) of f . Let λf : T → Kf

denote the canonical surjective homomorphism defined by f |t = λf (t)f , for t ∈ T.
(In particular, λf (Tn) = an(f), where Tn is the n-th Hecke operator.) It is then
immediate that AnnT(Wf ) = Ker(λf ), and thus we have a natural injection Kf =
T/AnnT(Wf ) ↪→ EndT(W ). Thus, by the above theorem there exists an abelian
subvariety A′f = A′Wf

≤ J = JΓ and an abelian quotient p = pf : J → Af := AWf

together with maps θ′f : Kf ↪→ End0
Q

(A′f ) and θf : Kf ↪→ End0
Q

(Af ) such that (A′f , θ
′
f )

and (Af , pf , θf ) satisfy the following conditions (which are in fact identical to those
of Theorems 1 and 2 of [Sh2]):

(i) A′f ∈ Sub(J/Q) and (Af , pf ) ∈ Quot(J/Q).

(ii) θ′f : Kf ↪→ End0
Q

(A′f ) and θf : Kf ↪→ End0
Q

(A′f ) are injective ring homomor-
phisms such that θ′f (an(f)) = (Tn)|A′f and θf (an(f)) ◦ pf = pf ◦ Tn, for all n ≥ 1.

(iii) dimA′f = dimAf = [Kf : Q].

(iv) T0(A′f ) = ϕΓ(Wf ) and p∗fΩ(Af ) = Wf .
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There are other natural T-submodules to which the (generalized) Shimura con-
struction can be applied, as the following example shows.

Example 5.4 Let f ∈ S2(Γ) be a newform of some level Nf |N and let Sf =∑
d|(N/Nf )Cf |βd denote the Atkin-Lehner eigenspace of f , where βd =

(
d 0
0 1

)
. More-

over, let S[f ] = (
∑

σ Sfσ) ∩ S2(Γ,Q), where σ ∈ GQ runs over all elements of the

absolute Galois group GQ = Gal(Q/Q). Then by Atkin-Lehner theory (cf. [DDT], p.
36) each S[f ] is a T-module of dimension σ0(N/Nf )[Kf : Q] and we have the following
T-module decomposition in which the sum extends over the set N (Γ) of all newforms
of all levels modulo the action of GQ:

S2(Γ,Q) =
⊕

f∈N (Γ)/GQ

S[f ]

Thus, by Theorem 5.1 there exists a unique abelian quotient (Ã[f ], p[f ]) (respec-

tively, abelian subvariety Ã′[f ]) of JΓ such that p∗[f ]Ω(Ã[f ]) = S[f ] (respectively, such

that ϕΓ(S[f ]) = T0(Ã′[f ]) ⊂ T0(J)), and dim Ã[f ] = Ã′[f ] = dimQ S[f ]. Moreover, by
Corollary 4.7 it follows from the above decomposition that we have isogenies

JΓ ∼
∏

Ã[f ] ∼
∏

Ã′[f ].(20)

Since in general T 6= Ẽ (because Ẽ is semi-simple whereas in general T is not),
we cannot expect that every abelian subvariety and/or quotient can be obtained by
the Shimura construction (Theorem 5.1). For example, the following varieties A[f ],d

cannot be obtained from the Shimura construction.

Example 5.5 As before, let f ∈ N (Γ) be a newform of level Nf |N and assume
for simplicity that Γ = Γ1(N). For a divisor d| N

Nf
put Sf,d = Cf |βd and S[f ],d =∑

σ(Sfσ ,d)∩S2(Γ,Q); thus Sf = ⊕dSf,d and S[f ] = ⊕dS[f ],d. In general, S[f ],d is not a
T-module because S[f ],d|Tp ⊂ S[f ],d/p, if p|d. However, S[f ],d is an algebraic subspace
of S2(Γ,Q) = Ω(JΓ) (as we shall see below) and hence corresponds to an abelian
quotient p[f ],d : JΓ → A[f ],d.

To see that S[f ],d is algebraic, we shall use the “degeneracy map” πNf ,d : X1(N)→
X1(Nf ) which is induced by the map g 7→ g|βd on the function fields. Thus, if
π̃Nf ,d = (πNf ,d)∗ : J1(N)→ J1(Nf ) denotes the Albanese map induced by autoduality
of the Jacobian, then we have π̃∗Nf ,dWf = S[f ],d. Since Wf is algebraic by Example 5.3

(because f is a T-eigenform in S2(Γ1(Nf ))) with corresponding quotient (Af , pf ) ∈
Quot(J1(Nf )), we see from Remark 4.6 that S[f ],d is also algebraic with corresponding
abelian quotient (A[f ],d, p[f ],d) := (Af , pf π̃Nf ,d)

0. In particular, there is an isogeny
ν[f ],d : A[f ],d → Af such that pf ◦ π̃Nf ,d = ν[f ],d ◦ p[f ],d. Thus, since S[f ] = ⊕dS[f ],d, it
follows from Corollary 4.7 that

Ã[f ] ∼ A
nf
f , where nf = σ0(N/Nf ).(21)
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Combining this with the relation (20), we thus obtain the isogeny relation

J1(N) ∼
∏

f∈N (Γ1(N))/GQ

A
nf
f .(22)

Remark 5.6 (a) It follows from the work of Ribet that the above isogeny relation
(22) is the isogeny decomposition of J1(N), for by Ribet we have that each Af is a
Q-simple abelian variety and that Af ∼ A′f ⇔ [f ] = [f ′].

(b) In [Ka] it is shown that in fact Ẽ := EndE(Ω(JΓ)) = T
′, where T′ = Q[{Tn :

(n,N) = 1}] ⊂ T. Thus, by the dictionary of Corollary 4.4 we have that the map
(C, p) 7→ p∗Ω(C) ⊂ Ω(JΓ) = S2(Γ,Q) induces a bijection

Quot(JΓ)
∼→ SubT′(S2(Γ,Q))

between the set of abelian quotients of JΓ/Q and the set of T′-submodules of S2(Γ,Q).
Furthermore, if (Ci, pi) i = 1, 2 are two such quotients, then we have a canonical
isomorphism

Hom0
Q

(C1, C2) ' HomT′(p
∗Ω(C2), p∗Ω(C1)).
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