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a b s t r a c t

In an inclusive fitness model of social behaviour, a key concept is that of the relatedness between two

interactants. This is typically calculated with reference to a ‘‘focal’’ actor taken to be representative of all

actors, but when there are different interaction configurations, relatedness must be constructed as an

average over all such configurations. We provide an example of such a calculation in an island model

with local reproduction but global mortality, leading to variable island size and hence variable numbers

of individual interactions. We find that the analysis of this example significantly sharpens our

understanding of relatedness. As an application, we obtain a version of Hamilton’s rule for a tag-based

model of altruism in a randomly mixed population. For large populations, the selective advantage of

altruism is enhanced by low (but not too low) tag mutation rates and large numbers of tags. For

moderate population sizes and moderate numbers of tags, we find a window of tag mutation rates with

critical benefit/cost ratios of between 1 and 3.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

We have two objectives in this paper. The first concerns the
construction of inclusive fitness models in a structured population
in which individuals in different situations have interaction
windows of different sizes and therefore have different numbers
of interactions. In our investigation of this (in Sections 1 and 2),
we look carefully at and gain a better understanding of the
concept of relatedness in a ‘‘heterogeneous’’ population struc-
ture—one that lacks the internal symmetry among candidate
actors that is so often implicitly assumed in theoretical inclusive
fitness studies.

The second concerns the evolution of cooperative behaviour in
a tag-based model in which individuals may have different tags
and interact only with those who have the same tag. In case
interactions are at random in the population as a whole, this will
clearly lead to a situation in which individuals with different tags
will have different numbers of interactions, and our analysis of the
first problem will provide a solution to the second (Section 3). We
will end with a general discussion of tag-based models.

Both of these objectives are of considerable interest. Ever since
Hamilton’s (1964) remarkable formulation of the inclusive fitness
effect, its methodology has been much studied, both for its
computational power and for the conceptual insights one can gain
from its formulation. But the theory itself is sophisticated and any
ll rights reserved.
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new example is an occasion for close study and deeper under-
standing of the method itself. The example studied here yields
such understanding.

Much recent work (see the Discussion) has studied tag-based
interactions, in which a behavioural trait, determined at one locus,
is also affected by the recognition of a ‘‘tag’’ (e.g. skin colour,
height) determined at another, or even culturally determined.
There is evidence that individuals can recognize similar pheno-
types and condition their behaviour accordingly (Matteo and
Johnston, 2000; Lize et al., 2006; Sinervo et al., 2006, Sigmund,
2009) and there is interest in the general implications of this
capacity on cooperative behaviour.
2. A general inclusive fitness formulation in a heterogeneous
population structure

We work with a finite haploid population held at constant size
with N individuals. Reproduction and mortality occur at a fixed
rate. Time is divided into interaction intervals of length 1/N. At the
end of each such interval there is one birth and one death. The
individual who gives birth is chosen according to relative
fecundity and this is determined by a number of interactions
which occur during that time interval. The population has
constant size so every birth is met by a death and the individual
who dies is chosen according to the population structure. In the
model we will study here (Sections 2 and 3) this mortality will be
random (global population regulation).

www.elsevier.com/locate/yjtbi
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We consider a behavioural locus at which there are two alleles,
a resident allele B and a deviant allele A. The behaviour we wish to
study is exhibited by an A-individual. It has a direct effect on the
fecundity of certain individuals, and an indirect effect, since
population size is constant, on the mortality of others. These
effects are assumed to be small.

Individual fitness is calculated as the difference between
fecundity and mortality. That is, individual fitness is the genetic
representation of the individual in the population one time unit
later, either through offspring or (negatively) through death. An
offspring inherits the parental strategy except for a small bi-allelic
mutation rate m, small enough that we can ignore quadratic terms
in m.

The inclusive fitness formulation: Our objective is to track the
changing frequency of the allele A under the action of selection. It
seems clear enough that, in principle, the information required to
do this is a comparison of the average fitness of A and B
individuals and indeed a wonderfully compact formulation of
Price (1970) for allele frequency change does exactly that.
Hamilton’s (1964) inclusive fitness method is closely related to
Price’s formula and provides an elegant and powerful heuristic
approach. The formulation we work with here assumes there is no
class structure in the population, that is, we do not have different
sexes or ages or habitat qualities. Such heterogeneity requires us
to account for variations in reproductive value (Taylor, 2009).

Take a focal A-individual (the actor) and add up the effects of
its A-behaviour on all individuals in the population (the
recipients), weighting each effect by the ‘‘relatedness’’ R of the
actor to the recipient. What we get is called the inclusive fitness
effect of the A-behaviour:

WI ¼
X

j

DwjRj ð1Þ

where the sum is over all recipient’s j, and Dwj is the fitness effect
on j, and Rj is the focal relatedness to j. The fundamental result of
the general theory says that the sign of WI will tell us whether
selection will cause an increase (+) or decrease (�) in the
frequency of A (Rousset and Billiard, 2000; Taylor et al., 2007a).
This result requires a number of significant assumptions, notably
that fitness effects are small (so that the result is valid to first
order in these effects) and additive (between individuals—so that
if my fitness is affected by the behaviour of two individuals the
net effect is the sum of the two separate effects).

The key concept here is that of relatedness and some care is
needed in formulating it. What is needed, of course, is a definition
of relatedness which provides the fundamental result mentioned
above, that the sign of WI matches the sign of the selective change
in the frequency of A. A standard approach for finite populations
(Rousset and Billiard, 2000; Taylor et al., 2007a) arrives at the
formula

Rj ¼
Gj � G

1� G
ð2Þ

where Gj is the coefficient of consanguinity (CC) between the actor
and recipient j defined as the probability that their two genes at
the A–B locus are identical by descent (that is, have a common
ancestor) and G is the average CC between the actor and the
population—including the actor itself (Taylor et al., 2007a). Notice
that this formulation of relatedness incorporates two normal-
izations, first the average relatedness of the actor to the
population is zero and secondly (through the denominator
1� G) the relatedness of the actor to itself is 1. A consequence
of the first is that the actor will, on average, have negative
relatedness to a good fraction of the population. Thus relatedness
measures not genetic identity per se but relative genetic identity.
Of course, in this formulation the focal actor is assumed to be
‘‘typical’’ in the sense that it is representative of all such actors. In
practice there will certainly be variations among actors, both in
regard to the fitness effects Dwj and to the relatedness Rj to the
recipient, and it is understood that both of these represent
‘‘averages’’ over all actors. The point we wish to make is that there
are some subtleties and assumptions behind the taking of this
average which require care. In order to discuss these, it is useful to
have a simple example in mind. We consider the classic case of
altruistic behaviour in which the actor confers a fecundity benefit
b upon a recipient at personal fecundity cost c. Because population
size is constant, these fecundity changes in actor and recipient
will produce changes in mortality elsewhere. We can model this
with four j-terms in the summation (1), actor and recipient and
the two individuals with altered mortality effects.

The issue we are interested in here has to do, broadly speaking,
with the relationship between the fitness effects and the
relatedness. First of all, we remark that the average (over actors)
of the product will not be the product of the averages unless the
two terms are uncorrelated. For example, if an individual was
somehow able to give a higher benefit b when it was more closely
related to the recipient (see references cited above), this would
have to be accounted for in formula (1). The model we study in
Section 2 provides an interesting variant of this, in that different
individuals interact different number of times. Of course we can
always expect natural variation in numbers of interactions, but in
the model we study here, this number happens to be positively
correlated with the relatedness between the interactants. Indivi-
duals who tend to have more interactions also tend to be more
closely related to their partners. How are we to handle this?

The critical insight is to distinguish between actors and
individuals. An actor is an individual engaging in an interaction
and the correct sample space, to track the effects of selection, is
the space of actors, or, if you like, the space of interactions. For
example, if we consider two individuals, I and J, and I interacts
three times and J interacts once, then there are four actors, I
counted three times and J counted once. With the set of actors as
sample space, there is no longer a correlation between Dwj and Rj

and Eq. (1) is valid.
In this context we need to clarify the definition (2) of

relatedness Rj. In the model of Section 2, different individuals
not only have different relatedness to their partners, but also have
different average relatedness to the population. Thus G in Eq. (2) is
not the average CC to the population taken over all individuals,
but is the average CC to the population taken over all actors.

So far, for our altruism example, Eq. (1) has four terms:

WI ¼ bR1 � cR0 � ðb ~R1 � c ~R0Þ ð3Þ

where R1 and R0 (=1) are the average relatedness of a random
actor to its partner and to itself, and ~R1 and ~R0 are the average
relatedness to the individual displaced by the offspring of the
partner and of the actor itself. A special case arises if mortality is
random and that is in fact the situation in Sections 2 and 3. In that
case, ~R1 and ~R0 are zero, and the last two terms can be omitted
leaving us with

WI ¼ bR1 � c ð4Þ

In many models, the assumption is often made, but not stated,
that the mortality arising from the effects of the interaction is
random. In Eq. (4) we get a positive inclusive fitness effect when

bR14c ð5Þ

and this is Hamilton’s classic 1964 rule for a selective increase in
allele frequency.
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3. An island model with variable patch size and two
interaction protocols

Here we apply the analysis above to a population of constant
size N structured as an island model with n patches of variable
size (Fig. 1). An offspring either remains on its natal patch (with
probability s) or disperses (with probability d=1�s) to a different
patch chosen at random, but in neither case does it displace an
existing breeder on that patch. Rather population regulation is
global and at each birth an individual is chosen at random in the
population to die. It is this dynamic that is responsible for the
variation in patch size; however the coupling of birth and death
events leads to a constant population size and a constant mean
patch size of m=N/n.

This variable patch-size island structure has been investigated
by Killingback et al. (2006) and Grafen (2007) in a model of a
public goods game. In these applications, the patch structure was
interpreted spatially as a demographic structure, and in this case
one might feel the assumption of global mortality to be somewhat
unrealistic, as it appears to require an unlimited elasticity of patch
size—that is, if patches are physical entities, there will typically be
a limited area in space they can occupy. However in the
application to tag-based models we will investigate in Section 3,
the structure is not spatial, rather we have a random-mixing
population in which the patches are virtual collections of
individuals with similar tags, and in this case the assumption of
global mortality is completely natural.

Here we study the altruistic b–c interaction described above
and consider two interaction protocols.

Protocol I: In each time step, each individual interacts with one
partner chosen at random from within its patch.

Protocol II: In each time step, each individual interacts with
every patchmate with some fixed probability y, so that the
Fig. 1. Island model with variable patch size. In our application to tag-based

cooperation in Section 2, this island structure exists in phenotype space, the

patches containing all individuals with a fixed tag. For the purpose of interaction,

the population mixes randomly, although an A-individual will behave altruistically

only when encountering a partner with the same tag.
expected number of interactions of an individual is proportional
to its number of patchmates.

If the patches are all the same size these protocols give the
same result (with additive fitness effects), but otherwise they do
not. Protocol I is the model considered by Killingback et al. (2006)
and Grafen (2007). Protocol II would arise if individuals
encountered partners at random in the whole population but
interacted only with those who were patchmates; in this case the
average number of interactive encounters for an individual would
be proportional to its number of patchmates. This is the situation
we work with here. For both protocols, Hamilton’s rule (5) applies
and the condition for a positive WI is

Protocol I : RIb4c ð6Þ

Protocol II : RIIb4c ð7Þ

with the relatedness given in Eq. (2).
To display the difference between the two protocols, think

about the relative contribution made by a patch of size k to the set
of interactions. In protocol I the contribution is proportional to k

and in protocol II it is proportional to k(1�k). We get a simple and
transparent version of the average over all instances of the
behaviour if we change notation and let Gk be the average CC
between patchmates in a patch of size k where the average is
taken over all appearances of a patch of size k, and let Gk be the
corresponding average CC of a patch k individual to the members
of its population. If we finally let pk be the frequency of patches of
size k, the relatedness coefficients are

Protocol I : GI ¼

PN
k ¼ 2 kpkGkPN

k ¼ 2 kpk

G
I
¼

PN
k ¼ 2 kpkGkPN

k ¼ 2 kpk

RI ¼
GI � G

I

1� G
I

ð8Þ

Protocol II : GII ¼

PN
k ¼ 2 kðk� 1ÞpkGkPN

k ¼ 2 kðk� 1Þpk

G
II
¼

PN
k ¼ 2 kðk� 1ÞpkGkPN

k ¼ 2 kðk� 1Þpk

RII ¼
GII � G

II

1� G
II

ð9Þ

Computations: Eqs. (8) and (9) give us transparent expressions
for the inclusive fitness effect under the two protocols, but they do
not give us a feasible computational scheme for the relatedness
coefficients except possibly for very small population size N. The
standard way to calculate relatedness in a structured population is
through recursive equations, but the variation in patch sizes in
this population is a severe complication and feasible relatedness
calculations for both protocols are not so easy to find.

Consider, for example, protocol I. In a recursive calculation of RI

we would at some point have two individuals in the same patch
and need to know where they came from one time step earlier.
Perhaps one of them is a new offspring, but to know whether it
was an offspring of a parent in the same patch we need to know
the size of the patch, so right away we have to cope with patch-
size dependent relatedness coefficients. And then we run into the
problem that the set of patch sizes is constantly changing. For this
protocol, other methods seem to be required; as an example,
Grafen (2007) has performed the RI calculation (but with non-
overlapping generations) using probability generating functions.

For protocol II, a modification of the standard recursive
calculation was found by Antal et al. (2009) who implemented
it in a finite one-dimensional ‘‘stepping-stone’’ population in
which patches can house a variable number of individuals. In the
supplementary materials A we use the Antal et al. approach to
provide a recursive calculation of RII in Eq. (9). The key idea is that
the recursive approach can be made to work if the equations are
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Fig. 3. Critical cost-benefit ratios (circles) obtained by computer simulation

(supplementary materials C) plotted for the case of a population of size 100 with

20 available tags (m=5 individuals per tag) superimposed on the theoretical

relatedness graph from Fig. 2. The height of the circles is the c/b ratio at which the

average frequency of the alleles A and B equilibrates. The 95% confidence intervals

are shown with a cross. The hypothesis that the true value lies outside the interval

between the crosses can be rejected at the 5% significance level. These error bars of

course depend on the number of simulations—if we did more the bars would get

shorter. The present figure convinces us that the simulations get close to the true

theoretical curve. The four points at d=0.2 belong to the recombination
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based, not on individuals, but on pairs of individuals. That is, in
forming the recursive equations, instead of asking for the ancestor
of each individual one time step ago, we ask for the ancestral pair

of each pair of individuals one time step ago. The reason this gives
us the protocol II result of course is that, as pointed out in Section
1, relatedness is calculated as an average over interactions, rather
than over individuals, and in protocol II the number of interactions
in a patch is proportional, not to the number of individuals in
the patch but to the number of pairs of individuals in the
patch.

To describe the approach in slightly more detail, we take a pair
of individuals in the same patch or in different patches and ask
whether the ancestral pair belonged to the same patch or to
different patches. We let GS and GD be the average CC in each case
(where this average is taken over all patch sizes in all population
states) and we construct a pair of recursive equations for these.
We do the same thing for the corresponding CC’s GS and GD of an
individual member of a random pair (in the same or different
patch) to the population. Then if we are working with within-
patch interactions (as we do in Section 3), we use the coefficients
GS and GS in the relatedness expression (2); if we are working with
between patch interactions, we use the coefficients GD and GD.

It is important to point out that the recursive equations are
formulated in a neutral population (with b and c equal to zero) it
being generally infeasible to take account of the effects of positive
b and c on the patch-size distribution. For small b and c (assuming
smooth behaviour of the fitness functions) this will give us correct
first-order results. Some results of the relatedness calculations are
displayed Fig. 2 and are confirmed by population simulations
(described in supplementary materials C) in Fig. 3.
m = 2indiv/tag

m = 5indiv/tag

m=20indiv/tag

N = infinity
N = 500

N = 200

N = 100

N = 50

0

0.2

0.4

0.6

0.8

1

R

0.1 0.2 0.3 0.4 0.5

d

Fig. 2. Dependence of within patch relatedness R (=RII for protocol II) on offspring

dispersal rate d in an island model (N individuals distributed on n patches) with

global mortality and (therefore) variable patch size with average patch size m=N/n.

Relatedness calculations are performed using the recursive equations developed in

the supplementary materials A. Three sets of graphs are displayed for increasing

values of m, with N increasing within each set. The graphs for increasing N tend to

a limiting N=N graph (Eq. (11)). Relatedness is seen to generally increase with

population size N and with average patch size m. For fixed values of N and m, the

dependence of R on d exhibits an interesting pattern. Except for very small d,

relatedness increases with decreasing d, attains a maximum, and then sharply

declines as d approaches zero. This decline is the result of a tendency, for very

small dispersal rates, for the population to often find itself concentrated in a single

patch in which (since average relatedness is zero) R will be negative. This decline is

not seen in an infinite population in which relatedness tends to 1 as d approaches

zero.

simulations. In each case the total probability that the offspring carries a different

tag from the parent is 0.2. For each point the (tag-mutation, recombination)

probabilities are: circle: (0.2, 0.0); triangle: (0.15, 0.05); bar: (0.10, 0.10); x: (0.05,

0.15).
4. Application to tag-based cooperation

We consider here a randomly mixed population in which each
individual has, in addition to its strategy, a tag which belongs to a
given set of n available tags. Offspring carry the same strategy and
tag of the parent unless either of these mutates. We assume a
strategy mutation rate m, small enough that we can ignore
quadratic terms in m, and an independent but larger mutation rate
d for tags. That is, an offspring has the same tag as its parent with
probably s=1�d and mutates to a different tag chosen at random
with probability d.

Note that in the previous inclusive fitness analysis, we
regarded the patch structure as spatial but in this application to
tag-based cooperative behaviour, the population is randomly
mixed and the island structure is a tag structure—patches
correspond to sets of individuals with a fixed tag. In the
terminology of Antal et al. (2009), the patch structure lives in
phenotype space. As we have pointed out, with this set-up,
random mortality is reasonable and expected.

Hamilton’s rule (Eq. (7)) gives us a critical cost-benefit ratio of

c

b crit ¼ RII
�� ð10Þ

where for this model, we use protocol II as the proportion of an
individual’s encounters which result in interactions is propor-
tional to the size of its tag set. Some results of the relatedness
calculations are displayed in Fig. 2. The significant trends appear
to be the dependence of relatedness on tag mutation rate d and on
average ‘‘tag size’’, the number m of individuals per tag.

Dependence on tag mutation rate d: For the range of values we
consider (of tag densities in the range m=2–20 individuals per
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tag), the graphs show a maximum relatedness (maximum critical
c/b ratio) at an intermediate mutation rate d, roughly in the region
0.002odo0.01. This can be explained as follows. For very low tag
mutation rates, the tag sets behave like independent subpopula-
tions with independent reproduction and global regulation. In this
case, drift will cause one tag to dominate and the others to go
extinct, so that much of the time the population is concentrated at
a fixed tag. In that case, since average relatedness is 0, and the
relatedness of an individual to itself is 1, the within-tag
relatedness must be close to �1/(N�1) and in particular will be
negative, so that no benefit, no matter how large, can compensate
for a positive cost. On the other hand, for high tag mutation rates,
tags will be invaded too often by immigrants and within-tag
relatedness does not get the chance to build to a high value.

Dependence on average tag size m: The graphs show that the
more tags there are, the easier it is for cooperation to succeed.
When there is one tag for every two individuals, cooperation is
much more advantageous than when there is one tag for every
twenty individuals. The main issue here is the probability that a
tag-mutation will provide a tag that is currently unused, thereby
allowing the mutant to establish a clone. If tag sets are frequently
all occupied, there is much less chance for a disperser to found a
new patch and therefore there is less chance for within-tag
relatedness to build to high levels. Having said that, it must be
noted that small values of m (no. of individuals per tag) will imply
that individuals, on average rarely encounter partners with the
same tag, so that selection will be very weak. However, even very
small selective forces can sustain cooperative behaviour on those
rare occasions of favourable encounters.

For large population size N and large numbers of tags n (but
with m=N/n fixed), the solutions to the protocol II recursions
simplify to give

G� 1� 2mN
md

1þdðm� 1Þ

G � 1� 2mN

giving the relatedness

RII ¼
G� G

1� G
�

1� d

1þdðm� 1Þ
ð11Þ

to first order in m. Note that it makes sense that if d=1, RII must
equal 0, and if d=0, RII must equal 1. In fact, in an infinite
population model, a rather simpler analysis is available (see
supplementary materials B) and gives the above value of RII

directly. In Fig. 2 Eq. (11) appears for each value of m as a limiting
curve (for large N). Eq. (11) also gives us the critical cost:benefit
ratio for A to be selectively favoured, and in this it captures two of
the trends discussed above, that small values of m (lots of tags)
and small values of d (low tag-mutation rates) promote coopera-
tion. What Eq. (11) does not capture is the selection against
cooperation found in finite populations for very small values of d.
That makes sense—in an infinite population, even very large tags
will still be a vanishingly small proportion of the whole
population and will have high relatedness because of the extreme
population viscosity.
5. Discussion

A central puzzle in the evolutionary study of behaviour is the
existence of altruism, or more precisely, the search for conditions
under which altruistic behaviour is adaptive, and the under-
standing of how widespread such conditions might be in nature.
The point is that a trait which caused its bearer to sacrifice
personal fitness in order to increase the fitness of another ought to
decline in frequency under the action of selection, so that the
surviving traits will be effectively selfish.

A fundamental solution to this dilemma was offered by
Hamilton (1964). If the altruist and recipient are genetically
related so that the recipient has a high enough probability of also
bearing the altruistic allele, then the altruistic action can, on
average, lead to an increase in the frequency of the allele. This
scenario, of altruism and cooperation between relatives, is played
out in many different ways in natural populations; Hamilton’s
genius, and his enduring legacy, was to understand that such
interactions can be formulated as maximizing principles, as if the
actor chooses its behaviour to maximize its inclusive fitness—a
relatedness-weighted average of its effects on all individuals
(Grafen, 2006). In the simple altruism model discussed here, the
inclusive fitness effect can be written in the form WI=Rb�c, and
from this we get ‘‘Hamilton’s rule’’ which says that the actor will
choose altruism when Rb4c, when the benefit b weighted by the
relatedness R between interactants exceeds the cost c to the
altruist.

But the idea raises many problems, a central one of which is
the question of how I am to recognize my close relatives in order
to restrict my beneficence to them? There have been two types of
answers given to this, both discussed by Hamilton—one through
proximity, the other through similarity—but both raise further
difficulties.

Interacting with neighbours: The first of these, proximity, argues
that in a ‘‘viscous’’ population in which individuals over their life-
time do not move far from their birth-place, one’s neighbours are
often one’s relatives, so one can simply interact with those who
live nearby. In this case, if the b/c ratio is sufficiently high it will
exceed the threshold 1/R needed for altruism to be favourably
selected, where R is now average relatedness to ones neighbours.
The difficulty raised with this is that in a viscous population,
neighbours tend also to be competitors in that their offspring
compete with one another for resources (food and space) and a
benefit given to a neighbour which results in additional offspring
will provide greater competition for the altruist and possibly undo
the positive effect on the altruistic allele (Hamilton, 1971). In fact
there is a general result which shows that in a population with a
‘‘transitive’’ structure of breeding sites, these two opposing forces
cancel one another out (Wilson et al., 1992; Taylor, 1992a, b; Taylor
et al., 2007b; Grafen and Archetti, 2008), so that interaction with
neighbours can support altruistic behaviour only under special
circumstances. [More precisely what ‘‘transitive’’ needs to mean
for the above result is that for any pair of breeding sites (i, j), there
is a bijective transformation of the space of sites mapping i to j

and preserving offspring movements and interaction probabil-
ities.]

Interacting with those who are similar: The second way to
‘‘recognize’’ relatives works by the principle that close relatives
tend to share a number of recognizable characteristics. Turning
this around, interactants that share a number of characteristics
might well be relatives, and in particular, might well have the
same cooperative tendencies. Introduced as the ‘‘armpit effect’’,
(Dawkins, 1982) this study now goes under the name of tag-based
models of cooperation. In such models, each individual has a tag,
possibly multi-dimensional, and interacts only with those who
have the same or nearby tag. The difficulty here is that whatever
the mechanism that links behaviour and tag, whether genetic or
otherwise, there are apt to be ways of cheating, of having the right
tag but not the right behaviour. Much recent work has been
devoted to the study of the dynamics between these two traits to
clarify the circumstances under which tag-based models can
promote cooperative behaviour. The first formal model (Riolo
et al., 2001) assumed a randomly mixed population, a one-
dimensional continuum of tags (similar to Antal et al., 2009) and
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allowed the threshold distance (for cooperation) to evolve.
However their model excluded the possibility of cheating—

everyone was a cooperator when they encountered a partner
with a close enough tag. In this set-up, the tag and the cooperative
behaviour come hand-in-hand; such mechanisms, in which tag
and behaviour emerge from the same pleiotropic gene, are
referred to as ‘‘green beard’’ models. Green beard genes are hard
to find, but see Keller and Ross (1998) for a classic example in the
red fire ant. More recent models have found random mixing to be
rather hostile to tag-based cooperation but have generated a
selective advantage for cooperation through the use of population
structure (Crozier, 1986; Grafen, 1990; Axelrod et al., 2004; Jansen
and van Baalen, 2006; Hammond and Axelrod, 2006; Rousset and
Roze, 2007; Gardner and West, 2007; Traulsen and Nowak, 2007).

Our model works with a randomly mixed population in which
individuals interact only when they encounter partners with the
same tag. We obtain a window of parameter values within which
cooperation is selectively favoured for a range of b/c values
between, say, 1 and 3, but this window is often quite small.
Generally we find that we need large numbers of available tags
and a low (but not too low) tag mutation rate. Two recent models
(Antal et al., 2009; Tarnita et al., 2009) offer different extensions
which are in ways more natural or realistic. Antal et al. (2009)
puts a one- or two-dimensional structure on the set of tags so that
the ‘‘patches’’ are arrayed on a grid in ‘‘phenotype space’’ and tag-
mutation is to neighbouring tags. This complicates the calculation
of relatedness but the results that emerge are simple and elegant.
They provide a complete analysis of the one-dimensional case and
obtain the result that for large populations cooperation is
selectively advantageous when b=c41þ2=

ffiffiffi
3
p
¼ 2:15. One of the

remarkable things about their model is that the parameter m is
missing! The essential reason for this is that the organic nature of
the population dynamics allows the parameters to interact in a
natural way. The one-dimensional grid structure occupies an
infinite line and while the population is allowed to drift along the
line, it stays together in a cluster of mean width

ffiffiffiffiffiffiffi
dN
p

where tag-
mutation d is restricted to the two immediate neighbours, and
this automatically fixes the average number of individuals per
occupied tag. Tarnita et al. (2009) extend the model in a different
way. Like us, they have a discrete unconnected tag set but they
allow individuals to share multiple tags, and interactions occur
only if ‘‘enough’’ tags are shared.

It is instructive to relate the general equilibrium condition (70)
in Antal et al. (2009), to our general relatedness formula (2). The
condition of Antal et al. (2009) can be written (divide top and
bottom of (70) by z) as

b

c

� ��
¼
ðN � 2Þð1� ĜÞþð1� GÞ

ðN � 2ÞðG� ĜÞ � ð1� GÞ
ð12Þ

where G is the CC between two interactants and Ĝ is the average
CC’s of the focal to the rest of the population excluding both the

focal and its interactant (noting that the individuals k, q and l in
their Eq. (1) are distinct). According to Hamilton’s (1964) rule, the
right side of condition (12) should equal 1/R where R is the
relatedness between interactants. To see that this is so, let G be
the average CC of the focal interactant to the entire population.
Then NG ¼ ðN � 2ÞĜþ1þG, and if this is used to eliminate Ĝ in
Eq. (12), we get

b

c

� ��
¼

1� G

G� G
ð13Þ

According to our general expression (2), the right-hand-side
of Eq. (13) is 1/R, as expected.

The CC calculations: We work with two protocols. In protocol I,
an individual interacts with a random patchmate; in protocol II, an
individual interacts with each patchmate with some fixed
probability. Each gives rise to a different average relatedness
coefficient. In both cases, R is a weighted average of the
relatedness between patchmates over all patches, but in protocol
I, in which the number of interactions in a patch is proportional to
the number of individuals in the patch, a patch of size k receives a
relative weight of k, whereas in protocol II, in which the number of
interactions in a patch is proportional to the number of pairs of
individuals in the patch, it receives a relative weight of k(k–1).
These weightings will give different results when within-patch
relatedness co-varies with patch size. The resulting formulae are
nicely displayed in Eqs. (8) and (9), but these equations do not
provide a feasible calculation of the average coefficients, and in
both cases the calculation presents a challenge.

The effect of recombination: Recombination and tag-mutation
both have the effect of giving the offspring a new tag, different
from its parental tag (and thereby they both tend to break up any
association between tag and strategy), but they work in different
ways. Mutation chooses the new tag at random from a set of
available tags, whereas recombination weights the choice of new
tag by the number of individuals currently holding that tag. If tag-
sets were roughly the same size, this would amount to the same
thing, otherwise they are somewhat different. Because of this
dependence of recombination on the current distribution among
tags, it is not easy to incorporate recombination in an inclusive
fitness analysis, but see Rousset and Roze (2007) for an analytic
model of recombination in a patch-structured population. We
have, however, run a few simulations (Fig. 3) which show
recombination to be much more hostile to cooperation than is
tag-mutation. One possible reason for this is that tag-mutation
allows the offspring of an A-individual to obtain an ‘‘unoccupied’’
tag and thereby establish a pure A-colony. Recombination cannot
do that.

The specification of relatedness: What qualifies Rj in Eq. (2) as a
relatedness coefficient are two critical normalizations—first that
average relatedness to the population is zero and secondly that
relatedness to self is one. The significance of this is that an actor
can pose the two questions: what difference would it make if I had
chosen my partner at random or if I had chosen my partner to be
myself? And the answer can be found by replacing Rj with 0 or 1.
To be more precise, that answer actually only works on average. It
applies to an individual engaged in a random interaction.

Having said that, it is worth pointing out that if an actor can
recognize and respond to different actor configurations, it seems
reasonable that different types of actor might evolve different
‘‘conditional’’ behaviours, and we could analyse the situation for
each type separately. Even for the tag-based model discussed
here, it is reasonable to suppose that an individual who tended to
encounter many individuals with the same tag might begin to
behave differently from one who encountered only a few.

Finite populations: We have pointed out that relatedness must be
calculated as an average over all interactions. In finite populations,
we need to make clear exactly how this average is calculated. In our
patch structured population, if we let the state of the population be
the number of patches of different sizes, then over time the state
of the population will continually change, and it might well be
(for a certain b and c) that the frequency of the allele A will increase
from some states and decrease in others. A general theory for
allele frequency change in finite populations (Rousset and Billiard,
2000; Taylor et al., 2007a) proposes that the overall direction
of allele frequency change should be calculated as an average
over all possible states of the rate of change at each state. What this
tells us is that the average in Eqs. (1) and (2) needs to be over all
interactions in any fixed state and then this in turn needs to be
averaged over all population states, or equivalently over time. For
example the average CC Gk between patchmates in a patch of size k
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in Eqs. (8) and (9) must be taken over all appearances of a patch of
size k over all time.

Reproductive value: The structure of breeding sites in our
population is inhomogeneous (due to variation in patch size) and
in this case we can typically expect different breeding sites to have
different reproductive value (RV) and this must be accounted for
in the inclusive fitness calculation (Taylor, 2009). For our
particular model, however, the RV of a breeding site is indepen-
dent of patch size, at least in the neutral population (with b=c=0).
The reason for this is that fecundity is independent of patch size
and since there are no local competitive effects, this is also the
case for mortality.
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