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The Inclusive Fitness Dynamics of Genomic Imprinting

J.M. GREENWOOD-LEE!, P. D. TAYLOR'" and D. HAIG?

' Department of Mathematics and Statistics, Queen’s University, Kingston, Canada,
’Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA

(Received: 25 June 2001,
Accepted: 30 October, 2001)

We develop a general inclusive fitness model for genetic evolution at an imprinted locus — one at which selection
is allowed to act conditionally upon parental origin of the gene. In many cases of interest, such genes affect the
fitness of relatives, particularly sibs. We formulate a matrilineal and patrilineal inclusive fitness and show that
these can be used to describe the dynamics of change in mean expression levels. We classify and analyze the sta-
bility of equilibrium points and apply our results to some examples that have appeared in the literature, multiple
paternity of a female’s offspring, the "ovarian time-bomb," and loss-of-function mutations.

Keywords: Genomic imprinting, matrilineal and patrilineal inclusive fitness, dynamics, evolutionary stability

1. Introduction

Phenotypic plasticity is the response of genotype,
through phenotypic expression, to different envi-
ronmental conditions or cues. The environmental
cues that trigger response may be biotic or abiotic,
and many traits, whether behavioural, morphologi-
cal, physiological, etc., demonstrate some level of
phenotypic plasticity. In fact, with the enormous
environmental variation observed in nature, it
seems obvious that selection must favour geno-
types capable of response. In an ideal world, the
response will produce an optimal match of trait to
environment.

Genomic imprinting can be thought of as a spe-
cial type of phenotypic plasticity, in which an al-
lele adjusts its level of activity in response to
whether it spent the previous generation in a male
or female germ line. Here, we think of the level of
activity as the phenotype determined by the gene’s
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control region. This plasticity of an allele’s phe-
notype may not be expressed as plasticity of its
bearers’ phenotypes because, at a diploid locus,
each individual has both a maternally and pater-
nally derived allele.

Genomic imprinting is thought to operate
through erasable, but heritable, modifications of
DNA (such as cytosine methylation). The impor-
tance of such modifications is that they can provide
the environmental cues that enable an imprinted
allele to respond to parent-of-origin-dependent
selection. If selection favors different levels of
expression when alleles are maternally and pater-
nally derived, then it will favour alleles that use
such cues to alter their level of expression in re-
sponse to parental origin. Alleles capable of this
type of phenotypic response are observed in nature,
most exhibiting specific inactivation when either
maternally or paternally derived (for reviews see
Reik and Surani, 1997; Reik and Walter, 2001).

What causes asymmetric selection dependent on
parental origin? Is such asymmetry necessary for
the evolution of parent-specific gene expression, in
particular monoallelic expression, or can this
evolve in its absence? A number of theories have
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been proposed to explain why parent-specific gene
expression might evolve (e.g. Solter, 1988; Hall,
1990; Moore and Haig, 1991; Haig and Westoby,
1991; Haig, 1992; Tycko, 1994; Varmuza and
Mann, 1994; Thomas, 1995; for reviews see Haig
and Trivers, 1995; Hurst, 1997). Our purpose here
is to provide a general framework for the dynamic
evolution of genomic imprinting of which these
theories can be viewed as particular cases.

Haig (1997) demonstrated that the theory of in-
clusive fitness can be modified to consider the
inclusive fitness effects of the maternally and pa-
ternally derived alleles separately and used this to
describe the ESS conditions for systems in which
alleles may adjust their level of activity in response
to parent-of-origin selective pressures. However,
the model presented considered only the ESS sta-
bility of equilibria, and did not address the evolu-
tionary dynamics and importantly the convergence
of a population to the given equilibrium (CSS sta-
bility, Eshel, 1983; Christiansen, 1991). In this
paper, we formalize Haig’s inclusive fitness model
in a dynamic context, we provide a general analy-
sis of the evolutionary dynamics, and examine a
number of examples.

2. The inclusive fitness model

We adopt the direct fitness approach of Taylor and
Frank (1996) and consider an imprinted locus at
which a large number of alleles are segregating.
Let y,, and y, denote the level of expression of the
maternally and paternally derived alleles at this
locus, and Y, and Y denote the population aver-

age values. Assume that the fitness W of a focal
individual depends upon its own levels of expres-
sion and on that of a number of neighbouring indi-
viduals. We let y; denote the maternal (j=m) and
the paternal (j=p) level of expression in individual
i, where i runs over the focal neighbourhood of
effect and we reserve i=0 for the focal individual.
We suppose that the fitness of the focal individual
depends upon the levels y,, = (vi») and y, = (y;,): W
= W(y/m YII)'

The matrilineal (j=m) and the patrilineal (j=p)
inclusive fitness effects are defined to be:
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where the sum is over the focal neighbourhood of
effect. Here R; is the matrilineal (j = m) or the
patrilineal (j = p) relatedness of individual i (as
actor) to the focal individual (as recipient) defined
in the Appendix (A6) as a quotient of covariances.
R;; can also be defined as the expected number of
copies in the focal genotype of the maternal or
paternal allele in individual i. It is important to
note that coefficients of relatedness need not be
symmetric. For example, the paternal relatedness
of a mother (actor) to her child (recipient) is 1/2,
whereas the paternal relatedness of the child (ac-
tor) to her mother (recipient) is O (in the absence of
inbreeding).

3. The dynamic model

Several previous models have examined the evolu-
tionary dynamics of genomic imprinting for par-
ticular dynamical systems (Mochizuki et al., 1996;
Iwasa et al., 1999; Kondoh and Higashi, 2000;
Iwasa and Pomiankowski, 2001). Our objective is
to track the change in the population means Y,
and Y, under the action of selection, with as much
generality as possible. Following the approach of
Abrams et al. (1993) we employ the evolutionary
dynamic:
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where c,,, is the additive genetic covariance be-
tween Y, and S/p, and v; the additive genetic vari-

ance in Y s both c¢,,, and the v; assumed constant.

In the Appendix (A10) we justify the use of the
inclusive fitness effects AW;in (2). Our objective

is to find the set of evolutionary attractors, vector
strategies Y = (9m, )A/p) , that are expected to per-

sist over evolutionary time, and to describe the
conditions under which there is asymmetric ex-
pression of maternally and paternally derived al-

leles, Yim # ¥, at evolutionary equilibrium.

The additive genetic covariance c,,, in (2) de-
scribes how allelic levels of expression are corre-
lated when maternally and paternally derived, and
this will depend upon the level of plasticity in the
expression of alleles. Essentially, we treat Y, and
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Yp as two genetically correlated traits (Roff,
1997). We assume c,,, = 0 and we present three
scenarios. In the first scenario, alleles are capable
of independently adjusting their levels of expres-
sion when maternally derived from when pater-
nally derived, and in this case c,, = 0. In the sec-
ond scenario, much of this independence is absent;
for example, alleles that tend to have high levels of
expression when paternally derived might also be
required to have high levels of expression when
maternally derived. In this case there will be a
positive correlation among the expression of ma-
ternally and paternally derived alleles, ¢,, > 0. In
the third scenario, alleles are completely con-
strained in that they cannot vary their levels of
expression in response to parental history. In this
case v, = V, = Cpp, and the two-dimensional dy-
namical system (2) reduces to a one dimensional
system. This will occur in systems that lack im-
printing.

Several previous works have examined the
evolutionary dynamics of genomic imprinting for
particular dynamical systems (Mochizuki et al.,
1996; Iwasa et al.,, 1999; Kondoh and Higashi,
2000). Our goal is to examine the evolutionary
dynamics of genomic imprinting with as much
generality as possible.

To accomplish this we make some simplifying

assumptions about inclusive fitness effects ij .

These are assumed to be differentiable functions of
the positive variables Y,,, and S/p, and to decrease

in each variable. That is, aAiAVAVj (S/m ,S/p)< 0 and

Yi
0 & (o =~ . ..
PR AW, (ym, yp)< 0 for k#j. In addition, both
Y

AW; are assumed to be positive at the origin (Ym

= 9p = 0), but to be negative when either Yy, or
S/p is sufficiently large. These assumptions simply

characterize the family of fitness functions #, such
that for a given level of expression of the parent-k
derived allele, there exists an optimal level of ex-
pression for the parent-j derived allele, that is
unique, non-negative, and for which the inclusive

fitness effect ij is zero. Moreover, this optimal

level of expression decreases as the expression of
the parent-k derived allele increases. These as-

o
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FIG. 1. A geometric representation of the maternal selection
nullcline

l\..l.m

sumptions mean that the benefit to the parent-j
derived allele, resulting from an increase in its own
activity, will decrease, as the total level of gene
expression increases (either through increased
activity of the parent-k or parent-j derived allele).

We define the maternal (j=m) and paternal
(j=p) selection nullclines to be the sets
uj = {S/'j = O} on which the selection gradients are
zero. Our analysis will require that these sets have
a simple geometric structure in the phase-plane
illustrated in Figure 1 for the case u, , and de-
scribed in the following proposition.

Proposition: Each selection nullcline,
uj ={§/'j =O}, is a differentiable curve with a

strictly negative slope from a point a; on the Y i
axis to a point B; on the Y -axis (k%), such that
Y <0 outside the curve and Y;>0 inside the curve.

We present the proof for the -case
Un :{Sl}n = O}; the analogous result for the set u,,

follows by simply interchanging the subscripts m
and p. It follows from our assumptions on the

AW; that Vi, = ViAW, +C AW, s a differenti-
able function of Y, and f/p , decreasing in each
variable, positive at the origin, and negative for

sufficiently large Y, or Y. It follows that there

are unique points @, and 3, on the Y- and f/p -

axes, respectively, at which y;, = 0, with y;, >0
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on each axis between these points and the origin. If
we take any point on the 9p -axis between the

origin and S, (Fig. 1) and draw a horizontal line to
the right from this point, then V;, will decrease
along this line and thus there will be a unique point
at which it 1s zero. This defines the curve, and it
clearly has a,, and (3, as its intersections with the
axes. According to the implicit function theorem it
oy, 1 0y .
M which
0Ym/ 0y,

is negative by our assumptions above.

Note that a,, is the stationary level of expression
for a maternally derived gene when the paternally
derived gene is inactive, and a similar interpreta-
tion applies to o,

is differentiable and has slope —

4. Parental antagonism

The kinship (or conflict) theory of genomic im-
printing postulates that parent-specific gene ex-
pression is the result of parental antagonism. This
arises when relations within an interaction group
are asymmetric with respect to matrilineal and
patrilineal kin. The simplest case is provided by
multiple paternity of a mother’s offspring (see
Spencer et al., 1998, 1999; Haig, 1999; Hurst,
1999), but parental antagonism may also arise in
other situations, for example, in populations with
sex-biased dispersal (Haig, 2000b). Haig (1997)
defined a gene to have parentally antagonistic ef-
fects if its expression is associated with an inclu-
sive fitness benefit when the gene is inherited from
one parent but an inclusive fitness cost when the
gene is inherited from the other parent, more gen-

erally, if Awm and Awp do not share a common

sign. We will see below, when we consider the
ovarian time bomb (example 2) and loss of func-
tion mutations (example 3), that this definition is
unsatisfactory, and we attempt a better definition
below.

Fasten attention on an imprinted locus in a dip-
loid population. In equation 1 we have defined the
matrilineal inclusive fitness effect to be:

- ow

AMW,=Y —Rq,, .

m Iz Ay Rim

We now define the matrilineal excluded fitness
effect (Haig, 2000a) to be:

Whnxp = z aylm (3)

Here we have simply replaced matrilineal related-
ness by patrilineal relatedness. Similary, we have
defined the patrilineal inclusive fitness effect to be:

Z a)hp

and we now define the patrilineal excluded fitness
effect (Haig, 2000a) to be:

AW|o><m z m Rim - 4)

To see the significance of these definitions, we
should start by allowing the possibility that the
maternal and paternal allele might control some-
what different aspects of behaviour, which for
convenience we will call the maternal and paternal
phenotypes. An example of this will be found be-
low in the ovarian time bomb (Example 2). Then
the matrilineal inclusive fitness effect is the overall
effect on the fitness of the focal individual of an
increase in the activity of the focal matrilineal al-
lele and of all its IBD copies. Now imagine that the
matrilineal and patrilineal allele interchange phe-
notypic effects, so that the patrilineal allele con-
trols the maternal phenotype. Then the matrilineal
excluded fitness effect is the overall effect on the
fitness of the focal individual of an increase in the
activity of the focal patrilineal allele and of all its
IBD copies, when these control the maternal phe-
notype. Similarly the patrilineal excluded fitness
effect (4) is the overall effect on the fitness of the
focal individual of an increase in the activity of the
focal matrilineal allele and of all its IBD copies,
when these control the paternal phenotype.

If the matrilineal inclusive and excluded fitness
effects do not share common sign, that signals a
disagreement between the matrilineal and patrilin-
eal allele in the focal individual over control of the
maternal phenotype and we say that there is mater-

nal parental antagonism. This holds if Ava and
Awmxp do not share common sign (that is, they

have opposite signs or if one is zero and the other
non-zero). Similarly if the patrilineal inclusive
and excluded fitness effects do not share common
sign, we say that there is paternal parental anta-
gonism.
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At an unimprinted locus, the maternal and pa-
ternal phenotypes must be the same and the matri-
lineal excluded fitness effect will equal the patri-
lineal inclusive fitness effect, and the patrilineal
excluded fitness effect will equal the matrilineal
inclusive fitness effect. In this special case, paren-
tal antagonism is present whenever patrilineal and
matrilineal inclusive fitness effects do not share
common sign. And at an imprinted locus, if matri-
lineal and patrilineal coefficients of relatedness are
identical, R, = R;,, for all i and there can be no
parental antagonism.

5. The dynamics of genomic imprinting

The system (2) is considered a competitive dy-
namic system and a general treatment of such sys-
tems is given in Hirsch and Smale (1974). For this
reason, we will omit much of the formalism in the
proofs of the results that follow. A given flow, or
evolutionary trajectory, of the phase-plane diagram
of (2) traces the evolutionary history of a popula-
tion, that is, it describes how the average level of
expression of the maternally and paternally derived
alleles, Y,and Yp- change within a population
over time. The above Proposition allows us to
analyze these dynamics in terms of the interaction
between the selection nullclines u,, and u,. There
are three cases to examine. In the first case the
selection nullclines contain the same points; in the
second case they are distinct and do not intersect,
and in the third case they are distinct but intersect
at a finite number of points.

Case 1

We begin by examining the dynamics of (2) under
the conditions that u,, and u, contain the same
points. Under these conditions the phase plane
diagram will have the form of Figure 2. Here u,, =
u, = u forms a continuous set of equilibrium points
that divide the phase plane into two distinct re-
gions. In Region I, which is the open set of all
points inside u , we have y;>0 for both j and in
Region 11, which is the open set of all points out-
side u , we have y;<0 for both j. We can conclude
that all evolutionary trajectories approach the set u
of equilibrium points as depicted in Figure 2.

."Fpl i
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FIG. 2. The maternal and paternal selection nullclines form a

continuous set of equilibrium points that divide the phase

plane into two distinct regions. All evolutionary trajectories
approach the set u of equilibrium points

We now turn our attention to evolutionary sta-
bility. Suppose the population is at the equilibrium
point p on u but that the population mean is per-
turbed to a point g close to p. Will the population
evolve back to the equilibrium point p?

Draw a small rectangle containing both p and ¢
with sides parallel to the axes and the left upper
corner and right lower corner lying on u (Fig. 3A).
Taking all points lying on the boundary and the
interior of such a rectangle yields a positively in-
variant closed set P. Thus the flow that begins at
g must remain inside this rectangle for all time,
and it follows that a flow that begins near p must
stay near p. However, it need not return to p —
there are points ¢ arbitrarily near p about which an
invariant set can be drawn which does not contain

T
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FIG. 3. The set u of equilibrium points is neutrally stable. A) A
flow that begins at ¢ must remain inside the rectangle for all
time, and it follows that a flow that begins near p must stay
near p. B) However, it need not return to p — there are points ¢
arbitrarily near p about which an invariant set can be drawn
which does not contain p

|?:
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p (Fig. 3B). We conclude that the set u of equilib-
rium points is only neutrally stable and that there
can be evolutionary drift along this line.

In the above case, the direction of selection is
identical for maternal and paternal expression.
Unequal expression of the two alleles, including
complete inactivation of one allele, is a theoretical
possibility. This might arise as a result of genetic
drift along the line of neutral equilibrium. A more
plausible scenario would invoke a change of selec-
tive regime, from one in which the nullclines were
non-identical to one in which they coincide. If
previously, there had been monoallelic expression
as a result of differential selection, this qualitative
pattern of expression might be maintained after the
change of selective regime (Moore and Mills,
1999).

Case 2

Suppose now that the selection nullclines u,, and u,
do not intersect, so that one is outside the other.
Under these conditions there exists no point
(Ym» Yp) that is stationary for both a maternally
and a paternally derived allele. We show that under
these general conditions Haig’s (1997) “loudest
voice prevails” principle obtains — one of the two
genes remains completely inactive while the other
operates at its optimal level. The gene that remains
active is the one whose nullcline is farthest from

o
L
an
L

FIG. 4. The paternal selection nullcline lies outside the mater-

nal selection nullcline. There exists a unique equilibrium at

(0,a,,). This equilibrium is asymptotically stable and is a
global attractor

the origin. For example, suppose u), lies outside u,,
(Fig. 4). We show below that under these condi-
tions there exists a unique equilibrium at (0,a ).
Moreover, this equilibrium is asymptotically stable
and is a global attractor. Over evolutionary time,
all populations will evolve to the equilibrium point
0, a)

The set of points (Yn,Yp) in the phase plane
where neither Y, =U nor Y, =U is divided into
three basic regions by the selection nullclines (Fig.
4). Region I is the set lying below u,, , Region II is
the set lying between u,, and u, and Region III is
the set lying above u,, .

We begin by observing that all evolutionary
trajectories of Regions I and III must eventually
enter Region II. Simply, we have that Y, =2 U and
Yp > Ufor all points (Y, Y, )in Region I and its
boundary, with equality iff \Ypy,Yp)UUp. Simi-
larly, for all points (Y, Yp)in Region III and its
boundary, Y, <0 and YpsU, with equality iff
(Ym: Yp) DU,

Now, once an evolutionary trajectory has en-
tered Region II it will converge to the equilibrium
point (0, ay,). This is a result of parental antago-
nism — Yp, <U and Y, >V at all points in the
interior of Region II, and this drives the system to
the equilibrium point.

In a similar way, we observe that if u,, lies out-
side u,, then there exists a unique equilibrium at
(a,, 0). This equilibrium is asymptotically stable
with all evolutionary trajectories converging to it.
In this case, unlike Case I, parent-specific mono-
allelic expression is a necessary outcome of the
model.

An important general class of models are those
in which fitness is given by a function
W(Yy,Y,,....Y,), where Y; = y;, + v, is the total
level of gene expression in the ith individual. The
models of Mochizuki et al. (1996), Haig (1997),
Iwasa et al. (1999), Kondoh and Higashi (2000),
and multiple paternity model of Example 1 (see
below), belong to this class. In such models, the
conditions for Aw; = 0 involve only the sum Ym
+ ¥p, hence all level curves of the Avvj and there-
fore of the y;must be straight lines of slope —1.
Thus the selection nullclines will have slope —1
and will be given by the equations:

Up“¥Yp =0 = Ym
Un:Yp =0p = Ym
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It follows that the nullclines are either identical
throughout their length (Case 1), or contain no
common points (Case 2). If they are identical, and
if also the covariance matrix in (2) is non-singular,
the inclusive fitness effects are both zero on the
common nullcline and there is no parental antago-
nism. If they are disjoint, there will be a region
where the signs of the AW differ, there will be
parental antagonism, and the “loudest voice pre-
vails.”

Case 3

Now suppose that the selection nullclines u,, and u,,
are distinct and intersect. This implies that fitness
is a function of both y;,, and y;,, and not merely of
their sum. For simplicity, we assume that the two
nullclines cross transversely at a finite number of
points. Under these assumptions, the dynamics of
(2) may be much more complicated than the previ-
ous cases, with the level of complexity depending
on the number of intersections between the null-
clines. However, in realistic cases the dynamics are
likely to be fairly simple, with the nullclines inter-
secting only once. Here, we present a number of
general results. In the discussion that follows we
turn our attention to the more simple cases of a
single intersection.

We begin by dividing the phase plane into four
kinds of regions (Fig. 5):

I: Ym >0, yp >Uu,
1I: Ym <0, yp >Uu,
I1T: }’m <V, Yp<u,
1v: Ym >0, yp <u.

Selection is ‘opposed’ when Yy, and Yp have
opposite sign, and ‘congruent’ when Yp,, and Yp
have same sign. Equilibria occur at all points
where the nullclines intersect, as well as at the
point (0, a,), when u, intersects the Y -axis lies
above u,,, and the point (a,,, 0), when u,, intersects
the Y,,-axis to the left of u,. We now turn our at-
tention to the stability of these equilibria.

Let J be the Jacobian matrix of the system of
equations (2) evaluated at an equilibrium p. Then,
p is asymptotically stable if all eigenvalues of J
have negative real parts.

The eigenvalues of J, are:

Yp

Up

%p

%m Ym

FiG. 5. The maternal and paternal selection nullclines are
distinct, but intersect. The phase plane is divided into four
kinds of regions:
L »,>0,,>0,
o, <0,y,>0,
o %, <0,y,<0,
v:  »%>0,y,<0.

4T ++/(Trd)? - 4Det)

, Where
2
Tra=v, aAyvm .\ CmpHaA)Np . aAyvm B+vp aAyvp
aym H aym ayp B ayp
Det] = (vmvp —cip)BM}N m aAYV £ - aA)N o AW, ]
HoYm 9, 09m 09, H

An interior equilibrium is asymptotically stable if
TrJ <0, and DetJ > 0. These are the standard CSS
conditions presented in Abrams et al. (1993). Since
onW /0y <uforj, k=m, p, it follows that TrJ is
always less than zero.

An analysis of our nullclines reveals that a ver-
tex where the slope of u,, is steeper than that of u,
is asymptotically stable (Fig. 6). That is:

slope of Uy, = —g%;m / g};m
p m

! __%p /0%
Py, O

a" ! ~ ~ a" ]
Thus, we have that E’p a}/m - a}’m }’p > Obut
0Yp 0Ym 0Yp OYm

< slope of




108 INCLUSIVE FITNESS DYNAMICS OF GENOMIC IMPRINTING

FIG. 6. An interior equilibrium is asymptotically stable if the
slope of u,, is steeper than that of u,,.

this is exactly the condition DetJ > 0. In this case,
there is stabilizing selection for biallelic expression
(see Example 3 below).

On the other hand, if at a vertex, p, the slope of
u, is steeper than that of u,, then DetJ < 0. In this
case J has an eigenvalue with positive real part and
an eigenvalue with negative real part, and thus p is
a saddle (Fig. 7). The only other asymptotically
stable equilibrium is (0, a,) when (0, a,) is above
u,, or (a,, 0) when (a,, 0) is to the right of u,. In
this case, there is disruptive selection on parent-
specific expression levels that would favor
monoallelic expression if the nullclines cross only
once.

FIG. 7. An interior equilibrium is a saddle and thus unstable if
the slope of u,, is steeper than that of u,,

We finish our presentation of the general dy-
namics with the assertion that every evolutionary
trajectory approaches an equilibrium point. How-
ever, the evolutionary outcome may depend on
initial conditions because multiple evolutionary
attractors may exist (for proof of these assertions
see Hirsch and Smale, 1974).

6. The relationship between the selection
nullclines and the sets AW; =0

This relationship is dependent upon the observed
level of genetic covariance, c,,. Suppose that the

graphs of the functions AWj =0 are distinct,

though they may intersect. Then there are three
possibilities. The first is that the maternal and pa-
ternal expression levels can evolve independently
and ¢,, = 0. In such cases, the selection nullclines

and the graphs ij =0 coincide and thus repre-

sent optimal levels of expression for maternally (j
= m) and paternally (j = p) derived alleles. The
second possibility is that the maternal and paternal
levels are positively correlated, ¢,, > 0 and the
covariance matrix is non-singular. In this case, the
selection nullclines are located between the graphs

of the functions ij =0, and the nullclines no

longer represent optimal levels of expression for
maternally and paternally derived alleles. For ex-
ample, consider a region determined by the graphs

ij =0, for which the curve AW_ = Olies out-

side the curve AW, =0. At such a point an in-

crease in maternal expression will increase matri-
lineal inclusive fitness but decrease patrilineal
inclusive fitness. Both selection nullclines will run
through this region and each one represents a set of
strategies that "perfectly balances" the maternally
and paternally derived selective pressures from the
point of view of that allele. The nullclines, how-
ever, will be distinct: this balance is not the same
from the perspective of the maternally and pater-
nally derived alleles. The third possibility is that
the covariance matrix in (2) is singular, and the
nullclines must coincide — there will be no regions
in the phase plane where selection is opposed. This
will occur, for example, when Ay,, = KAy, for some
constant £>0.

Non-zero covariances are a constraint on perfect
adaptation. An allele that broke these constraints
could achieve higher relative fitness than a con-
strained allele. Therefore, long-term selection at
loci subject to parental antagonism might be ex-
pected to reduce the genetic covariance term.
Whether selection on the rest of the genome might
sometimes oppose this process is a question de-
serving further study.



J. M. GREENWOOD-LEE et al. 109

7. Examples

We now turn our attention to three biological sce-
narios with different dynamics. For simplicity, we
assume for the remainder of the paper that the ad-
ditive genetic covariance between Y, and Yp is
zero (¢, = 0) . In this case the nullclines u; are
simply the sets Aw;j=0. We look at three exam-
ples. In Examples 1 and 2, the nullclines have no
interior crossing, and the stable equilibrium is on
the boundary. In Example 3 there is a single dy-
namically-stable interior crossing.

Example 1. Multiple paternity

We construct a simple competition model follow-
ing Taylor and Frank (1996) in which each female
mates with exactly » males. During development,
littermates compete for maternal resources and an
individual’s fitness depends upon its relative com-
petitive ability. In the simplest case, an individ-
ual’s demand for resources is proportional to the
total amount of growth factor produced, ¥ = y,, +
¥, such that an individual employing strategy Y in
a sib-group with average strategy Z takes a propor-
tion Y/Z of the resources available for develop-
ment. More precisely, if G(Z) denotes the average
fitness within a Z-group, then

w=w(Y,z)= % G(2) (5)

We assume that G(Z) is a concave-down function
in Z, so that marginal group fitness decreases with
high levels of competition within the group. For
example, as competition intensifies, a larger pro-
portion of resources might be wasted in the main-
tenance of the competition, and fewer resources are
actually available for development. This fitness
function W has been used previously to model
virulence in the evolution of protocells and para-
sites (Frank, 1994).
The inclusive fitness effects are

aw, =1 —Rj)ﬂ?mjc;'(ﬁ) (©)

where Y =y, +y, and R; is the average j-
relatedness of the sib group to the focal individual.

A simple model for group fitness with decreas-
ing marginal return is G(Z) = Z(2-bZ). In this case,
the optimal level of expression (Aw; = 0) from
the perspective of the maternally (j=m) and pater-
nally (j=p) derived genes is given by Z =
2/b(1+R;). Under this simple mating structure the
coefficients of relatedness are R, =1/2 and R, =
1/2n. Since fitness is a function of total amount of
growth factor, we have an example of case A
above. With strict monogamy (n=1), the related-
ness coefficients are identical, R,, = R, , the null-
clines coincide, and there is no parental antago-
nism. For n > 1, the nullclines are disjoint and the
system is parentally antagonistic. In such cases,
paternally derived alleles prefer higher levels of
demand than maternally derived alleles (Fig. 8)
and we observe that the “loudest voice prevails”™—
the maternally derived allele becomes inactive and
the paternally derived allele operates at its pre-
ferred level of expression. The opposite pattern of
imprinting is predicted for demand inhibitors (Haig
and Wilkins, 2000).
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FiG. 8. In case of multiple paternity, the nullclines are disjoint

and the system is parentally antagonistic. In this case, pater-

nally derived alleles prefer higher levels of demand than ma-

ternally derived alleles and we observe that the "loudest voice

prevails"— the maternally derived allele becomes inactive and

the paternally derived allele operates at its preferred level of
expression

When fitness i1s a function of the form
W(Yy,Y,,...,Y,), the nullclines are straight lines of
slope —1 and cannot cross. However, nullclines can
cross if fitness is a function of both y;, and y,,, and
not simply a function of their sum. For example,
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sometimes an allele may be expressed on its own
without a partner. If so, identical increments of
maternal or paternal expression may not have
identical effects on fitness, 0W/0y;, # O0W/dy,,.
Such might be the case if loss-of-function muta-
tions occur in an allele’s partner or if the allele is
expressed in post-meiotic germ cells. Such will
also often be the case for X-linked alleles subject
to random X inactivation because maternal and
paternal alleles are then expressed in different
cells.

Example 2. The ovarian time bomb

Varmuza and Mann (1994) proposed that the inac-
tivation of maternally-derived alleles at growth-
factor loci has evolved as a defence against ovarian
trophoblast disease (formally modelled by Iwasa et
al., 1999). Maternal silencing is predicted because,
for a given level of growth factor, female germ
cells are more vulnerable to malignant transforma-
tion than are male germ cells. Varmuza and
Mann’s hypothesis, and the model of Iwasa et al.
(1999), both assume a strict dependence between
an allele’s level of expression in a parent’s germ
line (i.e. after imprints are reset) and its parent-
specific level of expression in subsequent off-
spring.

As in Example 1, the focal individual is an off-
spring within a litter. We modify our competition
model to include an additional factor that describes
the reduction in fitness of the focal individual from
the development of ovarian trophoblast disease.
The neighborhood of effect includes post-meiotic
germ cell tumors that act to reduce the focal indi-
vidual’s probability of survival (ovarian teratomas
are derived from oocytes that have already under-
gone meiosis I: Linder et al., 1975). Half of these
tumors will have expression level y,, and the other
half will carry the mother’s other allele; and will
have an expected expression level y, . We assume

that the reduction in survival due to ovarian tro-
phoblast disease increases as maternal germ cell
expression increases. For simplicity, we will repre-
sent this effect on survival by a factor.

exd_—O((yrf1 + 9%)] Similarly, reduced survival
from testicular germ cell tumors could be repre-
sented by a factor exp{— B(yz + 9[2))], but we will

follow Varmuza and Mann in assuming [3 is negli-
gible and effectively zero. Thus, the fitness of the
focal individual becomes:

W= i) E);—/ [G(2) (7)
and the inclusive fitness effects are

31— =), R.G(Y)- 2a9ie(?)§,

AW, =™V 5

AW, = e2n §1— Rp)gi) +R G(Y)E ®)

YA p

where the R; are the relatednesses between sibs, as
above, and the last term in AW, is multiplied by
the relatedness of the focal individual to itself
which is 1. In the case of single paternity (n = 1),
R,,= R,, and the selection nullclines intersect at (0,
a,) (Fig. 9). This is the only equilibrium point and
is evolutionarily stable. In region II of the phase
plane (Fig. 9), decreased expression of maternally
inherited alleles increases matrilineal inclusive
fitness but decreases patrilineal excluded fitness,
because of the asymmetric relatedness of germ cell
tumors to the focal individual. Thus, in this region,
matrilineal and patrilineal inclusive fitness effects
have opposite sign, but since matrilineal and patri-
lineal relatednesses are always equal, there is no
parental antagonism.

¥p

||'|,:.

¥m
FiG. 9. In the ovarian time bomb, with single paternity, the

selection nullclines intersect at the point (0,0,). This is the
only evolutionary equilibrium and it is dynamically stable
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Ym

emy

FiG. 10. In case of loss-of-function mutations the maternally

and paternally derived alleles are under the same selective

pressures and as a result the phase-plane diagram is symmetric

through the line y,, = »,. In such cases, there is a single stable

interior equilibrium point to which all evolutionary trajectories
converge

In the presence of multiple paternity (n > 1), R,
# R,, the selection nullclines do not intersect and
the dynamics conform to case 2 (Fig. 4) and pa-
rental antagonism is present as in Example 1.

In the previous two examples the selection null-
clines either did not cross or intersected at the
boundary of the phase plane. Suppose on the other
hand that there is a single interior crossing of the
nullclines. This will be an interior equilibrium of
the dynamical system that might be stable (Fig. 10)
or unstable (Fig. 5). We have had difficulty finding
a mathematically simple example of the unstable
case. One possibility would be to model allelic
exclusion, say for immunoglobulin K-chains (Mos-
toslavsky et al., 1998). In this case, there is a se-
lective advantage for an individual B cell to ex-
press only one of the (rearranged) alleles at a locus,
and one could imagine the choice of which allele
to inactivate being based on parental origin. How-
ever, in fact, there is an effectively random choice
of which allele to inactivate in each clonal lineage.
Another possibility would be to model the effects
of deleterious mutation under either strict or partial
dominance (Hurst, 1997). If the reduction in fitness
resulting from deleterious mutation is severe, then
there will be a selective advantage for an individ-
ual to express only one of the alleles at the locus of
interest. This occurs because when only one of the
two alleles is active, then half of the time the mu-

tation will occur at the silent allele, and the delete-
rious effects will not be felt. However, there is no
greater advantage for having a maternally silent or
paternally silent allele. Again, the choice of which
allele to inactivate is effectively random. Example
3, below, provides a case of a stable interior equi-
librium.

Example 3. Loss-of-function mutations

We finish by presenting an example in which there
is a stable interior equilibrium point to which all
evolutionary trajectories converge. Mochizuki et
al. (1996) demonstrated that loss-of-function mu-
tations might act to discourage parent-specific
allele inactivation. The idea here is that the cost of
a loss-of-function mutation will, on average, be
less to individuals in which both alleles are ex-
pressed equally, than to those in which one of the
alleles is expressed at a higher level than the other.
We now incorporate this scenario into our model.

Let ¢ be the frequency of loss-of-function mu-
tations within the population of gametes. Realisti-
cally, g will change as parent-specific expression
levels at the locus evolve, but for simplicity we
assume that it is constant. We will assume that
females are monogamous, with each mating pro-
ducing a single zygote so that competition among
siblings is absent. In this case, the inclusive fitness
function W is

W= (1_q)26(y0m + yOp)+
+ (L~ 9)a|G(Yom) + GlYop ) ©)

The matrilineal (j=m) and patrilineal (j=p) in-
clusive fitness effects are:

AW; = (1-Q)ZG'(Y)+(1—q)qG'(9,-) (10)
where Y =y, +Y,. The maternally and paternally
derived alleles are under the same selective pres-
sures and as a result the phase-plane diagram is
symmetric through the line Yy, =Y. The maternal
(j=m, k=p) and paternal (j=p, k=m) selection null-
clines are:
" 1

¥ ==-@-a)¥.

b (1D
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The phase-plane diagram is shown in Figure 11.
There is a single stable interior equilibrium point to
which all evolutionary trajectories converge. The
stability of this equilibrium point follows from the
fact that the slope of the maternal nullcline u,, is
steeper than that of the paternal nullcline u,,.

Mochizuki et al. (1996) modelled the effects of
multiple paternity (polyandry) and loss-of-function
mutations simultaneously to examine whether loss
of function mutation could act to prevent loss of
maternal expression in parentally antagonistic
systems. They found that in the absence of polyan-
dry the selective pressures on maternally and pa-
ternally derived alleles are symmetric and the ESS
is found along the line yn, =y,. However, as the
frequency of polyandry increases, the paternal
selection nullcline moves away from the origin. As
a result the equilibrium point shifts from the line
Ym = Yp, moving away from they, —axis and
towards the Y —axis. If polyandry is sufficiently
rare (relative to the rate of loss-of-function muta-
tion), then, at evolutionary equilibrium, both the
maternally and paternally derived alleles will re-
main active, with the maternally derived allele
expressed to a lesser degree than the paternally
derived allele. However, if polyandry is suffi-
ciently common, the selection nullclines will not
cross and a maternally silent ESS will be observed.

Loss-of-function mutations provide a selective
force that favours biallelic expression. However,
the level expression need not be symmetric and it
is possible that either a maternally or paternally
silent ESS is observed despite the costs of func-
tional hemizygosity. The observed outcome de-
pends upon the relative strength of the disruptive
selective force (e.g. parental antagonism) when
compared to the observed rate of mutations.
Spencer and Williams (1997; also see Spencer,
2000) noted that this selective force was very
weak, of the same order as the mutation rate, and
would usually be insignificant when there is posi-
tive selection for imprinting. It should be noted,
however, that the models of Mochizuki et al.
(1996) and Spencer and Williams (1997) consider
germ line mutations only. Fitness costs of
monoallelic expression associated with somatic
mutations (e.g., increased predisposition to cancer)
is likely to provide a stronger selective force
against monoallelic expression, but this is yet to be
formally modelled.

8. Discussion

How “special” is the phenomenon of genomic
imprinting? At least from a mathematical point of
view, does it require a special theory or is it simply
an interesting variant of standard models? In ge-
netic terms, we have an allele that finds itself in
two different contexts or modes and is able to con-
dition its behaviour accordingly. Similar examples
come to mind: genes that find themselves in two
types of individuals (male or female), or the same
individual at different times (young and old), or
different phases (surviving and breeding), or dif-
ferent environmental conditions (forest and field).
In each case, the optimal pattern of expression in
one mode may differ from the optimal pattern in
the other. If these patterns are constrained to be
identical in the two modes, natural selection will
arrive at some compromise between the two
modes, a pattern of expression that is the “best” on
average. If the patterns are free to evolve inde-
pendently, natural selection will favour genes with
contingent patterns of expression that employ the
optimal pattern in each mode.

In our evolutionary model we were interested in
the effect of an allele on its own change in fre-
quency AQ, The analysis of the Appendix (A5 and
A6) decomposed this effect into two components:
dx;, an allele’s effect on expression level in mode j;
and aw;, the effect of dx; on inclusive fitness in
mode j. The latter is, itself, the sum of the products
of dW/dy,, the mode-j effect of gene expression in
individual i on the fitness of the focal individual,
and R; , the mode-j relatedness of individual i to
the focal individual. Evolutionary models some-
times restrict attention to only one mode, implicitly
assuming that the allele is expressed only in that
mode and the dx; in the other is zero (e.g. sex-
limited characters). Sometimes the models assume
a tradeoff between the two modes (antagonistic
pleiotropy), so that the 0//dy; may be of different
sign. For example, one’s relatedness to neighbours
might differ in the two modes (when young you
are more likely to be with sibs, etc.) so that differ-
ent relatednesses would be used for different j, and
we would need a general expression such as (1) for
inclusive fitness.

Haig (1997, 2000a) reformulated the concept of
inclusive fitness using coefficients of parent-
specific relatedness. Above we provide a general
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mathematical framework for his “matrilineal” and
“patrilineal” inclusive fitnesses using the direct
fitness formulation of Taylor and Frank (1996) and
a dynamic model of continuous-trait evolution.
The difference between the inclusive fitness and
direct fitness formulations is really just one of ac-
counting: whether the focal individual is regarded
as the recipient (the direct fitness approach) being
affected by the behaviour of others, or the actor
(the inclusive fitness approach) affecting the fit-
ness of others. In models of genomic imprinting it
is crucial to keep in mind which approach is being
used as the relatedness coefficients are seldom
symmetric (Haig, 2000a). In the direct fitness ap-
proach, relatedness is determined by taking a ran-
dom maternal or paternal allele in individual i and
then calculating its frequency in the focal individ-
ual. From a mathematical standpoint, the direct
fitness formulation has advantages, because the
inclusive fitness effect is easily obtained from the
“fitness function” that relates the fitness of the
focal individual to the behaviour of others. How-
ever, we often find the inclusive fitness approach
more intuitive, with its emphasis on the fitness of a
focal gene rather than a focal individual, especially
when the population contains different classes of
individuals.

The authors are not in total agreement about the
efficacy of the continuous-trait model for under-
standing the evolution of genomic imprinting. This
model assumes that a large number of alleles are
segregating at a locus and tracks selective changes
in the mean level of expression of a population.
This approach, in its application to the evolution of
genomic imprinting, was pioneered by Mochizuki
et al. (1996). If one views the evolution of genomic
imprinting as taking place by a series of selective
sweeps in which better adapted alleles arise as new
mutations and successively replace less adapted
alleles (Haig, 1999), then the use of variances and
covariances is somewhat problematic. The con-
straints on perfect adaptation become the non-
occurrence over evolutionary of mutations time
that uncouple antagonistic pleiotropic effects, not
the covariance between the expression in different
modes of the alleles currently present in a popula-
tion. Complete unanimity and consistency would
somehow be inappropriate in a collective work on
internal conflicts, and all of us have found the pro-
cess useful in clarifying our own ideas.
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APPENDIX
A)

Fasten attention on a rare mutant allele at the im-
printed locus. Let its frequency at the maternal and
paternal locus in a random individual i be g;,, and
gy (these will take values either 0 or 1). We use »
to denote population-wide average. Hence @, and

@p are the population frequencies of the mutant

allele at the two loci. For simplicity, we will as-
sume that the allele has no sex specific effects,
then the frequency in mature males and females
should be the same and gy, = gp = §. Let the

maternal (j=m) and paternal (j=p) level of gene
expression (the phenotype) in individual i be y;
and let these have population average S/j . Let the

maternal and paternal effects dx, and dx, of the
mutant allele be defined as the slope of the regres-
sion of y;, and y;, on mutant allele frequency:

dyj =gjdx; +¢&j (AD)

where dy; = y;— ¥ j 1s the phenotypic deviation of

individual i due to the mutant allele, and &; has
mean zero and is uncorrelated with g;; . We assume
that the dx; are small — this is the reason for using
differential notation. This “weak selection” as-
sumption is standard in inclusive fitness arguments
and we will use it to show that if selection changes
the population wide allele frequency by an amount
AQ, then the change in the population mean y; is

given by:

AY; = Ag dy (A2)
Here are the details of this argument.

The slope dx; of the regression in (Al) will, in
general, depend on the population mean @ :

dy; = gjdx; (@)+¢;

If we use a “bar” to denote population mean after
selection, then the mean phenotype deviations
before and after selection are ay; = gox;\g), and
ayj =gax;(g). Thus, the change in mean pheno-

type is
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= gdx, (g)_ @dxj (Q) =
= (@ - Q)dxj (Q)"' g(dxj (@)— dx; (@))
= agdx; (6)+ alox; (8)ad +0(ad))

where the “prime” denotes derivative of the dx;.
Now the second term is second order in the dx;.
Indeed the derivative of dx; is certainly first order
in dx; and we will show below (A5) that A is also
first order in the dx;. It then follows that (A2) is
valid to first order in the dx; .

To model the population wide change in fre-
quency of our mutant allele, AQ, we use the direct
fitness approach of Taylor and Frank (1996) which
adds up the fitness effects of neighbours on a ran-
domly chosen “focal” individual. Let i run over the
interaction neighbourhood of the focal individual
(with i=0 for the focal individual).

Assuming differentiability of the fitness func-
tion W, the fitness of the focal individual can then
be written

ij = d)_/j - d)A/j

(A3)

Wy =W zéfyﬂd d 0
0o=WH+ Yim * Yip
=

L\ s 5w

g dx D (Ad)
ip pE

EI}T JimdXm +

where the sum is over the focal neighbourhood and
the partial derivatives of W are evaluated at the
population mean y; = Y;. Let gy be the mutant
frequency among the gametes of the focal individ-
ual. We make an assumption of fair meiosis which
gives us go = (gom T gop)/2. According to Price’s
(1972) covariance theorem the change AgQ in
population-wide mutant frequency g due to the
differential effects of fitness is given by the equa-
tion:

A@ — COV(gP !WO) —
W
1 < Uaw

= =N — d — O
Wzg?y cov(do, Gim ) >‘m+ 3 COV(QO g,p)dx g

Var(go

= ?Rmdxm +—dex

(A5)

where the matrilineal (j=m) and the patrilineal
(j=p) relatedness of individual i (as actor) to the
focal individual (as recipient) is

COV(QO ij )

(A6)
covdo, goj

/.
(Michod and Hamilton, 1980). To obtain (A5) we
have used the fact that cov(go, go;) = cov(go, go) for
j = m, p. This follows from the fact that gy = (go,, +
gop)/2 and our assumption (above) that there are no
sex-specific effects.

A word is needed about notation in (A6). For
example, why have we chosen to write the de-
nominator as cov(go, gy;) rather than cov(go, go)?
Relatedness is a quotient of covariances — covari-
ances between transmission effectiveness and ef-
fect on behaviour. That is, from the point of view
of an allele trying to propagate itself through its
effect, two individuals are genetically similar if a
behavioural change in one is correlated with a
change in transmission frequency of the relevant
allele in the other. In the above analysis, gy works
as a transmission variable whereas the g.; deter-
mine behaviour.

With the maternal and the paternal inclusive fit-
ness effects defined by equation (1), equation (AS)
tells us that the change in population-wide fre-
quency of the mutant allele has the form

Ag = % (Awm dx,,, + Awp dxp ) (A7)

Note that the effect of the allele on its frequency is
expressed in (A7) as the sum of two terms, one for
each parent j, each of which is the product of two
factors — the effect dx; of the allele on the level of
expression, and the effect Aw; of this expression
on inclusive fitness.

Putting (A2) and (A7) together, we get

~

Ay, = %r(g) (A\Nm dxy dX_,- + Awp dx/’ dxj)' (A8)

J
Finally, we are interested in the relationship be-
tween dx,, and dx, . The point is that these might
not be independent and that there might be some
correlation among the pairs that are physically
attainable. To model this we suppose that there are
a large number of possible forms of the mutant
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allele each with its own (dx,, dx,) pair and popula-
tion frequency g and we suppose that the average
mutant maternal and paternal effect is zero:
E(Q9dx)) = 0 for j = m, p where E denotes the ex-
pectation over all mutant alleles. Then the overall
change in the population mean Yy; is the average
of (A8) over all mutant alleles. To take this aver-
age, we use the fact that for each mutant allele,

1+F -
-9

1+F .
+o(9)

var(g) = 9(1-9) (A9)

where F is the inbreeding coefficient. Henceforth
we will use the assumption that all mutant alleles
are rare to ignore terms in o( g). Then

1+F

DE(Y)) = - [ AW, E(§dx,, dx) +

+ AW E(gdx dx;)]

_1+F
2W

+ AW, cov(dy, , dx)]

[AW cov(dx,, , dx;) +

(A10)

and this (discrete-time) equation forms the basis of
our dynamical system (2). To do this we note that
the time step for the above equation is one genera-
tion and this is very small in terms of evolution, so
we call it df and then AE(y;) becomes dE(y;) and
we divide by df to get the differential equation.

In a number of cases of interest, fitness W is a
function of individual phenotype Y and sib-group
average phenotype Z : W = W(Y, Z) and these in
turn are simply the sum of maternal and paternal
levels of expression ¥ = yy,, + yo, and Z = z,, + z, =
E:(yim + y;») where the expectation E; is over the sib
group. In this case the inclusive fitness effect (1)
is:

oW , oW

AW, === +°R;

All
oY 0Z (A1)

where R; = E(R;) is average relatedness between
two sibs (with replacement).



