Publications

Books

  1. Modular Invariant Theory. H.E.A. Campbell and D.L. Wehlau, Encyclopaedia of Mathematics series, Vol. 139, Springer-Verlag, 1st Edition., 2011, XIII, 233 p., ISBN: 978-3-642-17403-2. eBook version
  2. Error-Correcting Codes, Finite Geometries and Cryptography. Edited by Aiden A. Bruen and David L. Wehlau, Contemporary Mathematics Series, Vol. 523, 2010, 244 p., AMS: Providence RI. ISBN-10: 0-8218-4956-5.
  3. Symmetry and spaces. In honor of Gerry Schwarz. Edited by H. E. A. Campbell, Aloysius G. Helminck, Hanspeter Kraft and David Wehlau. Progress in Mathematics, 278. Birkhäuser Boston, Inc., Boston, MA, 2010. xx+207 pp. ISBN: 978-0-8176-4874-9
  4. Invariant Theory in All Characteristics. Edited by H.E.A. Campbell and David L. Wehlau, eds., CRM Proceedings & Lecture Notes 35 (2004) AMS: Providence, RI. ISBN: 0-82183244-1.

Refereed Book Chapters

  1. Joseph R. Oldford and David L. Wehlau, Optimal Block Lengths for Secret Key Distillation in Error-Correcting Codes, Finite Geometries and Cryptography. Edited by Aiden A. Bruen and David L. Wehlau, Contemporary Mathematics Series, Vol. 523, 2010, AMS: Providence RI. ISBN-10: 0-8218-4956-5.
  2. R. James Shank and David L. Wehlau, Decomposing symmetric powers of certain modular representations of cyclic groups, arXiv:math/0509044, in Symmetry and Spaces In Honor of Gerry Schwarz Series: Progress in Mathematics, Vol. 278 Campbell, H.E.A.; Helminck, A.G.; Kraft, H.; Wehlau, D. (Eds.) Birkhäuser Boston, Inc., Boston, MA, 2010. xx+207 pp. ISBN: 978-0-8176-4874-9 Providence Rhode Island, USA, 2010 169-196.
  3. David Wehlau, Some Problems in Invariant Theory, in Invariant Theory in All Characteristics, H.E.A. Campbell and David L. Wehlau, Editors, American Mathematical Society,
  4. David L. Wehlau, Complete Caps in Projective Space which are Disjoint from a Codimension 2 Subspace, in Finite Geometries, A. Blokhuis, J.W.P. Hirschfeld, D. Jungnickel and J.A. Thas, Editors, Kluwer Academic Publishing, Dordrecht, 2001 347-361. Here are some corrections to the results in this chapter. You may download a short list of the corrections in either dvi or postscript or pdf format. Alternatively, you may download the entire corrected version of the chapter from the arxiv in various formats including pdf format or ps format. You may also download the full corrected chapter from here in either pdf format or dvi format.

Preprints

  1. H. Campbell, J. Chuai, R. Shank, and D. Wehlau, Finite subgroups of fields, arXiv:1610.03709 [math.AC]
  2. Federico Galetto, Anthony V. Geramita, and David L. Wehlau, Degrees of regular sequences with a symmetric group action, arXiv:1610.06610 [math.AC]
  3. Federico Galetto, Anthony V. Geramita, and David L. Wehlau, Symmetric Complete Intersections, arXiv:1604.01101 [math.AC]
  4. Danny Rorabaugh, Claude Tardif, David Wehlau, and Imed Zaguia, Iterated Arc Graphs, arXiv:1610.01259[math.CO]
  5. Gord Simons, Claude Tardif and David Wehlau, Topologically 4-chromatic graphs and signatures of odd cycles, arXiv:1601.07856 [math.CO]

Articles in Refereed Journals

  1. R. Dewji, I. Dimitrov, A. McCabe, M. Roth, D. Wehlau, and J. Wilson, Decomposing inversion sets of permutations and applications to faces of the Littlewood-Richardson cone, (J. Algebr. Comb. 2017, 44 pages.) doi:10.1017/s10801-017-0738-6
  2. Danny Rorabaugh, Claude Tardif and David L. Wehlau, Logical compactness and constraint satisfaction problems, (Logical Methods in Computer Science, 13, (1:1), 2017, 1-11.) DOI:10.23638/LMCS-13(1:1)2017
  3. Gord Simons, Claude Tardif, and David Wehlau, Generalised Mycielski graphs, signature systems, and bounds on chromatic numbers, (JCTB, 122, 2017, 776-793.) http://dx.doi.org/10.1016/j.jctb.2016.09.007.
  4. Yin Chen, and David L. Wehlau, Modular invariants of a vector and a covector: A proof of a conjecture of Bonnafé and Kemper J. Alg.472, 2017, 195-213.) http://dx.doi.org/10.1016/j.jalgebra.2016.09.029.
  5. Anthony V. Geramita, Andrew H. Hoefel, and David L. Wehlau, Hilbert functions of Sn-stable artinian Gorenstein algebras J. Alg.458, 2016, 53-70.) http://dx.doi.org/10.1016/j.jalgebra.2016.03.013.
  6. H. E. A. Campbell and David L. Wehlau, The Second Main Theorem for the Modular Regular Representation of C2, (Adv. Math., 225, 2014, 641-651.) arXiv:1308.3710[math.RT].
  7. H. E. A. Campbell, R. J. Shank, D. L. Wehlau, Rings of invariants for modular representations of elementary abelian p-groups, Transformation Groups, 18, No. 1, 2013 1-22. (DOI) 10.1007/s00031-013-9207-z, arXiv:1112.0230v2.
  8. John C. Harris and David L. Wehlau, Resolutions of 2 and 3 dimensional rings of invariants for cyclic groups, Communications in Algebra, 41:11, 2013, 4278-4289, DOI: 10.1080/00927872.2012.695834, arXiv:0912.1107v2. )
  9. David L. Wehlau, Invariants for modular representations of a cyclic group of prime order via classical invariant theory, arXiv:0912.1107v2. J. European Math. Soc., 15 No. 3, 2013, 775-803 (DOI: 10.4171/JEMS/376).
  10. David L. Wehlau, Weitzenböck Derivations of Nilpotency 3, DOI 10.1515/forum-2011-0038, arXiv:1011.0454v2 [math.RA]. Forum Mathematicum, 26 No. 2, 2012, 577-591.
  11. A.A. Bruen, J.W.P. Hirschfeld, and D. L. Wehlau, Cubic Curves, Finite Geometry and Cryptography, Acta Applicandae Mathematicae Volume 115 (2011), Number 3, 265-278, DOI: 10.1007/s10440-011-9620-z.
  12. H.E.A. Campbell, R. James Shank and David L. Wehlau, Vector invariants for the two dimensional modular representation of a cyclic group of prime order, arXiv:0901.2811, Advances in Math 225, No. 2, 1 October 2010, 1069-1094. doi:10.1016/j.aim.2010.03.018
  13. Alexander Duncan, Michael LeBlanc and David L. Wehlau, A SAGBI Basis for F[V2 V2 V3]Cp, Canad. Math. Bull. 52 (2009), no. 1, 72-83.
  14. Jan Draisma, Gregor Kemper and David L. Wehlau, Polarization of Separating Invariants, Can. J. Math. Vol. 60 No. 3 (2008) 556-571. [ pdf , ps , or dvi ]
  15. David L. Wehlau, The Noether Number in Invariant Theory, Comptes Rendus Math. Rep. Acad. Sci. Canada Vol. 28 No. 2 (2006), 39-62.
  16. Aiden A. Bruen, David L. Wehlau and Mario Forcinito, Error correcting codes, block designs, perfect secrecy and finite fields, Acta. Appl. Math. DOI 10.1007/s10440-006-9043-4.
  17. H.E.A. Campbell, B. Fodden and David L. Wehlau, Invariants of the DiagonalCp-action on V3, J. Algebra 303 No. 2 (2006) 501-513. Also see the appendix with additional details contained in the online version of this paper at the Journal of Algebra web site.
  18. John C. Harris and David L. Wehlau, Non-Negative Integer Linear Congruences, Indagationes Mathematicae 17 No. 1 (2006) 37-44 [scanned from journal or pdf].
  19. Claude Tardif and David Wehlau, Chromatic numbers of products of graphs: The directed and undirected versions of the Poljak-Rodl function, Journal of Graph Theory <51>No. 1 (2006) 33-36.
  20. J.J.E. Imber and D. L. Wehlau, A Family of Small Complete Caps in PG(n,2), European Journal of Combinatorics 24 No. 6 (2003) 613-615.
  21. R. James Shank and David L. Wehlau, Computing modular invariants of p-groups, Journal of Symbolic Computation 34 No. 5 (2002) 307-327.
  22. R. James Shank and David L. Wehlau, Noether Numbers for Subrepresentations of Cyclic Groups of Prime Order, Bulletin of the London Mathematical Society 34 No. 4 (2002) 438-450.
  23. Aiden A. Bruen and David L. Wehlau, New Codes from Old; A new Geometric Construction, Journal of Combinatorial Theory, Series A 94, (2001) 196-202.
  24. H.E.A. Campbell, I.P. Hughes, G. Kemper, R.J. Shank and D.L. Wehlau, Depth of modular invariant rings, Transformation Groups, 5 No. 1 (2000) 21-34.
  25. H.E.A. Campbell, A.V. Geramita, I.P. Hughes, G.G. Smith and D.L. Wehlau, Some Remarks on the Hilbert functions of Veronese Algebras, Communications in Algebra, 28 No. 3 (2000) 1487-1496.
  26. H.E.A. Campbell, J. Harris and D.L. Wehlau On rings of invariants of non-modular abelian groups, Bulletin of the Australian Mathematical Society, (60 (1999) 509-520.
  27. R.J. Shank and D.L. Wehlau, The transfer in modular invariant theory, J. of Pure and Applied Algebra, 142 No. 1 (1999) 63-77.
  28. A. Bruen, and D. Wehlau, Long Binary Linear Codes and Large Caps in Projective Space, Designs, Codes and Cryptography, 17 No. 1 (1999), 37-60.
  29. R.J. Shank and D.L. Wehlau, On the depth of the invariants of the symmetric power representations of SL_2(F_p), J. of Algebra, 218 (1999) 642-653.
  30. H.E.A. Campbell, J. Harris and D.L. Wehlau, Internal duality for resolutions of rings, J. of Algebra, 215 (1999) 1--33. Common fonts version.
  31. H.E.A. Campbell, A.V. Geramita, I.P. Hughes, R.J. Shank and D.L. Wehlau, Non-Cohen-Macaulay vector invariants and a Noether bound for a Gorenstein ring of invariants, Canadian Mathematical Bulletin 42 No. 2 (1999), 155-161.
  32. G. Schwarz and D. Wehlau, Invariants of four subspaces, Annales de l'Institute Fourier 48 No. 3 (1998) 667-697.
  33. A.A. Bruen, L. Haddad and D.L. Wehlau Binary Codes and Caps, JCD Series A, 6 No. 4 (1998) 275-284.
  34. A. Bruen, L. Haddad and D. Wehlau Caps and colourings of Steiner triple systems, Designs, Codes and Cryptography 13 (1998) 51--55.
  35. A. Bruen, L. Haddad and D. Wehlau Intersection sets in PG(n,2), J. of Statistical Planning and Inference 62 (1997) 3--11.
  36. A. Bruen and D. Wehlau, Partitioning quadrics, symmetric group divisible designs and caps, Designs, Codes and Cryptography 10 (1997) 145--155.
  37. H.E.A. Campbell, I.P. Hughes, R.J. Shank and D.L. Wehlau, Bases for rings of coinvariants, Transformation Groups 1, No. 4 (1996) 307-336.
  38. A. Bruen, D. Wehlau and Z. Zhaoji, Unimodular matrices and Parsons numbers, Journal of Combinatorial Theory, Series A 74 No. 2 (1996), 333-336.
  39. A. Brouwer, A. Bruen and D. Wehlau, There exist caps which block all spaces of fixed codimension in PG(n,2), Journal of Combinatorial Theory, Series A 73 No. 1 (1996), 168-169.
  40. J. Fugere, L. Haddad and D. Wehlau, 5-chromatic Steiner triple systems, Journal of Combinatorial Designs 2 (1994), 287-299.
  41. D.L. Wehlau, When is a ring of torus invariants a polynomial ring?, Manuscripta Mathematica 82 (1994), 161-170.
  42. D.L. Wehlau, Constructive invariant theory for tori, Ann. Inst. Fourier, Tome 43 F (1993), 1055-1066.
  43. D.L. Wehlau, Equidimensional varieties and associated cones, J. Algebra 159 (1993), 47-53.
  44. D.L. Wehlau, Equidimensional representations of 2-simple groups, J. Algebra 154 (1993), 437-489.
  45. D.L. Wehlau, A proof of the Popov conjecture for tori, Proc. Amer. Math. Soc. 114 (1992), 839-845.
  46. A.K. Dewdney, T.R.S. Walsh and D.L. Wehlau, Average-time testing of satisfiability algorithms, Congressus Numerantium 39 (1983), 305-325.

Refereed Conference Proceedings

  1. D.L. Wehlau, Some recent results on the Popov conjecture, Group Actions and Invariant Theory CMS Conference Proceedings 10 (1989), 221-228.
  2. D.L. Wehlau, Constructive Invariant Theory, Proceedings of the Thirty-Ninth Summer Research Institute Algebraic Groups and Their Generalizations: Classical Methods (1994), 372-383.

Other Publications

  1. A.K. Dewdney, and D.L. Wehlau, Transat and NPL, University of Western Ontario, Department of Computer Science Report #127, June 1985.